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An on-demand workforce can greatly benefit a traditional call center by allowing it to adjust its service capacity
on demand quickly. Despite its conceptual elegance, the operationalization of this process is challenging due
to the various sources of randomness involved. The purpose of this paper is to help call centers enhance
service levels while keeping operating expenses low by taking advantage of an on-call pool of temporary
agents in day-to-day operations. For that purpose, we develop a two-stage decision model in which the first
stage seeks the optimal mix of permanent and on-call staff, and the second stage seeks a joint on-demand
staffing and call scheduling policy to minimize the associated cost given the base staffing level and the size of
the on-call pool. Because the exact analysis of the two-stage decision model seems analytically intractable,
we resort to an approximation in a suitable asymptotic regime. In that regime, we characterize the system
dynamics of the service operation and derive an optimal joint on-demand staffing and call scheduling policy
for the second-stage problem, which in turn is used to find an approximate solution to the first-stage problem.
In particular, the derived policy for the second-stage problem involves tapping into the on-call pool to procure
a team of on-demand agents when the number of calls to be processed exceeds a certain threshold and
dismissing them when it falls below another threshold; additionally, the call scheduling rule shows an unusual
pattern due to the interplay between staffing and scheduling decisions. Extensive numerical studies under
realistic parameter settings show that the solution approach we propose can achieve significant cost savings.

Key words : on-demand staffing; call centers; many-server queues; dynamic scheduling; diffusion analysis

1. Introduction
Traditional call center staffing faces a difficult trade-off between having too few agents on hand
(understaffing) and having too many agents on hand (overstaffing). Long call hold times, agent
burnout, and call abandonment are just a few negative consequences of understaffing. Overstaffing,
on the other hand, leads to high labor expenditures due to excessive idleness. An ideal solution would
be to enable call centers to bring on a number of temporary agents on demand and sign them off
when they are no longer needed to meet customer needs.

Meanwhile, the trend towards flexible work justifies the creation of temporary positions in service
settings to achieve short-term staffing flexibility. For instance, nursing homes use part-time nurse
aides from a “float” pool to meet patient-centered metrics (Slaugh et al. 2018). In our collaboration
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with a large call center owned by a multinational American e-commerce company (referred to as
Company A), we found that the call center historically struggled to adjust staffing levels quickly to
handle unexpected call surges despite using short staffing periods (30-minute intervals). To address
this issue, the management of the call center proposed two approaches: (i) creating an on-call pool
of former employees (agents who previously worked at the call center and are willing to assist with
unexpected workload spikes on demand); and (ii) partnering with a gig-work agency that offers
additional freelance agents as needed. Both approaches enable service capacity to expand and shrink
on demand while controlling labor costs. Company A ultimately decided to experiment with the first
approach, which serves as the direct motivation of this work.

The inherent stochasticity in demand and service processes creates the intrinsic value of an on-call
pool of temporary agents as a means to make short-term capacity adjustments on demand. This
flexibility offers the manager an option to optimally utilize capacity as the system changes. However,
deploying and using an on-call pool, as done by Company A, presents challenges. First, there are costs
associated with using either on-demand or permanent agents, and thus determining the appropriate
on-call pool size and base staffing level that maximizes economic benefits is essential. Second, to reap
the full benefits of the on-demand workforce, the manager needs to optimize the timing of adding
and removing on-demand capacity, termed as the on-demand staffing decision. These decisions are
inherently path-dependent, requiring a rigorous stochastic optimization framework. Third, call centers
cater to different customer groups and segment calls into various classes, making call scheduling an
essential control level. As a result, there is a need to orchestrate on-demand staffing and call scheduling
decisions. Our goal is to address these distinct challenges by developing a modeling framework that
captures the economic trade-offs between utilizing on-demand and permanent agents, incorporates
stochastic uncertainties and coordinates relevant control levers.

The quality of customer service provided by call centers can be evaluated using various metrics,
such as the abandonment rate (the percentage of calls that are hung up before being answered by an
agent). In this work, we use the abandonment cost as a way to assess the adverse effects of system
congestion. We describe a call center as a multi-class many-server system, where different classes
are distinguished based on their arrival rates, their abandonment rates, and the cost incurred if a
call is abandoned. The second-stage problem involves decisions about both on-demand staffing and
call scheduling given the number of permanent agents and the size of the on-call pool. On-demand
staffing involves switching between two modes - “on” and “off” - where the call center uses only its
permanent staff in the “off” mode, and both permanent and on-demand staff (from the on-call pool)
in the “on” mode. When the call center wants to switch to “on” mode, it sends an “entry request”
to the on-call pool, and any on-demand agents who accept the invitation are immediately admitted
into the system, while those who do not wait for the next entry request. Switching from “off” to “on”
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incurs a “setup” cost of C, and each on-demand agent who agrees to work is compensated at a rate
of co until he or she signs off. There is no limit to the number of times the operating mode can be
changed. Call scheduling, on the other hand, determines which customer will be served when an agent
becomes available when there are customers from more than one class waiting, thereby constituting
an additional decision strategy. The objective of the second-stage problem is to minimize the sum of
abandonment costs and the costs associated with actually using the on-demand agent. The first-stage
problem seeks to minimize the overall cost, which includes expenses for permanent staff and costs
from the second-stage problem.

The two-stage decision problem does not lend itself to exact analysis, particularly because the
second-stage problem (i.e., the problem of finding an optimal on-demand staffing and call scheduling
policy) is generally complicated. For this reason, we use common approximation approaches found in
the literature. We posit that the call center has a high call volume and a large number of permanent
agents who collectively provide a total capacity that roughly equals the total demand volume. Formally,
we consider the popular Halfin-Whitt regime (Halfin and Whitt 1981), in which a diffusion control
problem (DCP) will emerge as an approximation for our second-stage problem. Then, it suffices to
seek the solution to the DCP, as its solution readily translates into an admissible control strategy for
the original stochastic service system, which solves the second-stage problem.

We view our contributions as trifold.
Modeling: To the best of our knowledge, this paper is one of the first to study a problem of jointly

making short-term capacity adjustment and resource allocation decisions for a service system with
many service units and multiple customer classes in a formal stochastic optimization framework. The
solution to this problem is then integrated into a long-term capacity planning problem, which involves
determining the size of the permanent staff and the size of the pool of standby service units providing
on-demand capacity.

Methodology: One important contribution of this research is a judicious construction of a solution
to the Bellman equation associated with the DCP that approximates the second-stage problem.
Absent the on-demand capacity, our second-stage problem essentially reduces to the one in Kim
et al. (2018), where the authors develop dynamic customer scheduling policies by formulating and
solving a corresponding DCP. An important theoretical contribution of their work is the construction
of a solution to the associated Bellman equation, which involves analyzing a parametric family of
functions, each of which is a solution to a differential equation. In contrast, our DCP includes an
additional dimension that captures staffing control, resulting in a bivariate value function. Thus,
constructing a solution to our Bellman equation entails analyzing a parametric family of function
pairs and identifying a function pair from this family that intersects twice with an area of intersection
equal to the setup cost C. This task in turn requires analyzing convexity/concavity properties of
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the pairs of functions, a procedure that is not required in Kim et al. (2018). Thus, establishing the
well-posedness of our Bellman equation requires analytical tools that go beyond those used in Kim
et al. (2018).

Managerial implications: (I) Our approximation solution to the second-stage problem reveals a
threshold value, c̄ (dependent on the decision variables of the first-stage problem), such that switching
between modes does not result in economic gains if co ≥ c̄. However, if co is low enough, there exists a
value C̄ that ensures switching between modes is worthwhile when C < C̄. In this case, the system
should be in the “on” mode when the total number of customers in the system rises above a given
level, x?1, and in the “off” mode when the total number of customers falls below another level, x?0 <x?1.
The two policy thresholds, x?0 and x?1, can be easily computed by solving the Bellman equation. (II)
Solving the second-stage problem also reveals a key insight about call scheduling: a customer class
may lose service priority as the system becomes moderately congested and then regain priority as the
system becomes even more congested. This “double switching” is not possible when staffing levels
are fixed and patience times are exponentially distributed; see Ata and Tongarlak (2013), Atar and
Lev-Ari (2018); see also §4.1.1 of Kim et al. (2018). To provide a brief explanation of the phenomenon,
it is instructive to first consider the situation where on-demand capacity is absent. As nicely explained
in Kim et al. (2018), in this case, a more impatient yet more expensive class will receive priority when
there are fewer customers, allowing the system to reduce the instantaneous abandonment cost, and
then lose priority since by prioritizing the other class, the system gains an additional abandonment
rate and can thus better reduce congestion. In the presence of on-demand staffing, however, the
benefit of exploiting the high abandonment rate of the more expensive class to trim down congestion
when congestion levels are high is weakened. This is because increasing service capacity (by the use of
on-demand agents) serves as an alternative means to reduce congestion. The “abnormality” in the
scheduling rule is thus attributed to the capacity expansion and shrinkage mechanisms, suggesting
a rich interplay between the two types of decisions. (III) Furthermore, we numerically demonstrate
that solving the first-stage problem leads to significant cost savings compared to relying solely on
permanent staff. Hence, call centers are likely to benefit significantly from combining operational and
tactical decisions.

Organization. Section 2 provides a comprehensive review of relevant literature. Section 3 introduces
our modeling framework and presents the two-stage decision problem. Section 4 presents the DCP,
which serves as an approximation for the second-stage problem and provides an approximation for the
first-stage problem. In the same section, we solve the DCP by finding the solution to the associated
Bellman equation and gain valuable structural insights from it. In Section 5, we propose a joint
on-demand staffing and scheduling policy based on the results from Section 4. Section 6 discusses some
key points related to our modeling and solution framework. In Section 7, we explain our simulation
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setup, present our numerical findings, and discuss some qualitative insights. Finally, in Section 8, we
conclude. Proofs that are omitted in the main paper and numerical schemes for determining various
relevant quantities can be found in the e-companion.

2. Literature Review
This study builds upon several streams of research which we survey below.

Staffing. Numerous papers have addressed the problem of staffing service systems, especially call
centers. Gans et al. (2003) and Aksin et al. (2007) provide comprehensive reviews of earlier research
in this area. The conventional approach to call center staffing relies on queueing theory, assuming that
work can be deferred when no servers are available. Recent papers have employed newsvendor models
to provide effective staffing solutions for queues, as seen in Harrison and Zeevi (2005), Whitt (2006),
and Bassamboo et al. (2010). In Bassamboo et al. (2010), a staffing problem in a single-class queueing
system with customer abandonment and random arrival rates is investigated. It is demonstrated that
rules-of-thumb, like the square root safety staffing principle, may depend on the relationship between
workload and uncertainty in arrival rates. The study by Gurvich et al. (2019) is the first to consider
staffing with contractors, examining a model where a platform determines the number of available
providers, their wages, and a cap on potential providers. Another work, Ibrahim (2018), analyzes
a firm’s two-period staffing dilemma, where agents have preferences for specific periods. The firm
must decide how many agents to encourage to work in each period, considering the possibility of
customer abandonment. Dong and Ibrahim (2020) extend this approach to hybrid staffing models
that combine employees and contractors. They develop fluid and stochastic fluid approximations for
the queueing system and evaluate their accuracy in large-scale settings. However, these papers focus
on fixed staffing levels (at least in the short run) and homogeneous customer populations, whereas
our study allows for short-term adjustments to staffing levels and multiple customer classes, making
it more operational in nature. A recent study by Lobel et al. (2023) considers a platform’s staffing
problem, focusing on the choice between hiring employees and setting up a contractor marketplace.
The authors seek to understand the operational differences between these two work models in the
context of a demand-driven system that is both stochastic and evolving over time. Their research
provides insights into the trade-offs between hiring employees and utilizing contractors in dynamic
and uncertain demand environments, demonstrating the benefits of a contractor marketplace.

Scheduling queues with multiple customer classes. Our paper builds on the body of literature
on optimal scheduling of many-server queues in heavy traffic. Atar et al. (2010, 2011) consider an
overloaded multi-class, multi-server Markovian queueing system with abandonment and show that
cµ/θ rule is asymptotically optimal for minimizing customer holding cost. To handle systems with
nonlinear holding costs and general patience times, Long et al. (2020) extend the cµ/θ rule to the
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Gcµ/h rule. Papers that seek to find optimal scheduling rules in the popular Halfin-Whitt regime
include Harrison and Zeevi (2004), Atar et al. (2004), Gurvich et al. (2008), Kim et al. (2018) in
the case of fully flexible servers and Tezcan and Dai (2010), Armony and Ward (2010) in the case
of skill-based routing. Our paper differs from the prior studies in several ways. The most significant
distinction, arguably, is that in our system staffing levels are allowed to change rapidly to a moderate
degree. This distinguishing feature is not only fundamental to the decision problem under consideration
in this study, but it also has a significant impact on scheduling decisions. Ata et al. (2019) investigate
a volunteer staffing problem from the perspective of a crop gleaning operation. The authors translate
the problem into an approximating drift rate control problem and derive a nested threshold policy as
the optimal staffing policy using a heavy-traffic framework. One distinction between our paper and
theirs is that, in our setting, flexible staffing has a fixed cost, resulting in a joint “mode-switching”
and drift-rate control problem.

Rate control in service systems. Speaking of drift-rate control, our work is broadly related to the
literature on managing queues through adjustable arrival and service rates. One approach to achieving
an adjustable arrival rate is through pricing strategies. For example, Low (1974) investigates the
optimal control of a Markovian queue with a finite buffer, where the objective is to maximize the
long-run average reward by serving customers. The system manager can only control the arrival rates
by adjusting prices, as they have no control over the capacity level. Yoon and Lewis (2004) explore the
problem of dynamic pricing and admission control in a system where both arrival and service rates
are nonstationary and customers are sensitive to prices. They establish several structural properties of
the optimal policy, including the monotonicity of the optimal prices in the state of the system under
various cost structures. Ata and Shneorson (2006) investigate the problem of dynamically controlling
the arrival and service rates in a service facility to optimize a long-run average objective. Their study
proposes a solution to determine the optimal dynamic prices and service rates a system manager
should set when serving delay-sensitive, rational customers. Additionally, some papers approach rate
control in queues as a drift-rate control problem for Brownian systems, as seen in Ata et al. (2005),
Ghosh and Weerasinghe (2010), and Weerasinghe (2015).

Optimal switching problems. Our work is situated in the literature that studies stochastic control
problems involving sequential switching decisions. These problems involve switching costs that can be
considered fixed investments required to realize the operational advantages of an appropriate regime.
Intuitively, such costs force the controller to look beyond the immediate advantages to ensure that a
regime switch will accrue sufficient benefit over time to merit the fixed investment. Duckworth and
Zervos (2001) solve an optimal two-regime switching problem by first using dynamic programming
to derive the Bellman equation and then establishing a verification theorem. Ly Vath and Pham
(2007) investigate a two-regime switching problem in which a geometric Brownian motion is used
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as the underlying state process. In the context of stock investing, Zervos et al. (2013) consider and
solve a two-regime switching problem. All the studies above adopt the discounted cost criterion, and
hence their approaches and results do not directly apply to the DCP under consideration, which
adopts an average cost criterion. Wu and Chao (2014) consider optimal switching of a Brownian
production system under average cost criteria. In their study, the construction of a classical solution
to the corresponding Bellman equation relies on showing that the graphs of two functions intersect
exactly twice and that the area of intersection is precisely the switching cost. They achieve this by
exploiting the fact that the two functions are solutions to two linear differential equations and thus
have explicit expressions. Compared to Wu and Chao (2014), the major technical challenge here is
that the two functions we analyze to construct a solution to the Bellman equation are solutions to
two piecewise linear differential equations and do not have explicit expressions. To overcome this
difficulty, we must derive the desired structural properties for the two functions from first principles,
which is technically challenging.

Heavy-traffic approximations for many-server queues. Last but not least, our solution builds on
modern heavy-traffic approximation techniques for queues with many servers originating from the
seminal paper Halfin and Whitt (1981), where the authors prove a diffusion limit for the transient and
steady state for a sequence of M/M/N queues staffed according to the so-called square-root staffing
as the arrival rate approaches infinity. Extensions to include impatient customers are considered by
Garnett et al. (2002), Zeltyn and Mandelbaum (2005), Reed and Tezcan (2012), Huang et al. (2016).

3. Model
We will now describe our modeling framework, which incorporates core problem features and fully
exposes essential tactical and operational trade-offs. Although our work is primarily motivated by call
center operations, our framework can be easily adapted to assist decision-making in other service
settings that employ an on-demand workforce. Therefore, we will use generic terms such as “jobs”
and “servers” instead of “customer calls” and “agents” in the following discussion.

3.1. System Dynamics

Jobs are categorized into I different classes, and the arrival of class-i jobs follows a Poisson process
with a rate of λi. Let Ai(t) represent the total number of class-i jobs that have arrived in the system
up to time t. Then, for each job class i, we have that

Ai(t) = Πa
i (λit) for t≥ 0,

where Πa
i is a unit-rate Poisson process that is independent of any other process. Additionally, we

define λ as the total arrival rate, which is the sum of all class rates, λ=
∑
i λi. Each class-i job has a
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patience time that represents the maximum amount of time the job is willing to stay in the queue.
This is a common scenario in call centers, where a customer may hang up if kept waiting too long.
We assume that the patience times of class-i jobs are exponentially distributed with a rate of θi.
Moreover, we use Qi(t) and Ri(t) to denote the number of class-i jobs waiting in the queue at time t
and the number of class-i jobs that have abandoned the queue up to time t, respectively. Then,

Ri(t) = Πr
i

(
θi

∫ t

0
Qi(u)du

)
for t≥ 0,

where Πr
i is a unit-rate Poisson process that is independent of any other process.

The service system has N0 permanent servers, which represent full-time employees in call center
operations. These permanent servers are homogeneous and fully flexible in the sense that they work at
the same speed and can handle any job, regardless of its class. The service times at these permanent
servers are assumed to be exponentially distributed with a common rate parameter µ. Although a
more general setting in which different job classes have different service rate parameters could be
modeled and analyzed, such an approach would significantly increase the dimension of the problem
and blur the main insights provided by the proposed on-demand staffing mechanism.

In addition to the permanent servers, the system manager can draw capacity from a pool of K
on-demand servers. When additional service capacity is needed, the manager requests that on-demand
servers provide service, which we refer to as an “entry request.” The system enters an “on” mode as
soon as an entry request is made. However, the availability of on-demand workers cannot always be
guaranteed, and the number of on-demand workers who show up can be random. To capture this
uncertainty in the system dynamics, we adopt a modeling approach inspired by the influential paper
by Ibrahim (2018). Specifically, we assume that when an entry request is made, each on-demand server
that is currently off duty agrees to work (and thus goes on duty) with probability p. Any on-demand
server that is unavailable at the time the entry request is made gets to make their decision as to
whether to work at the next entry request.

When the system is in “on” mode, the system manager can issue an “exit request,” instructing all
on-demand servers that are currently on duty to go off duty en masse. We say that the system enters
“off” mode whenever an exit request is made. When the switch from “on” to “off” occurs (and the
system remains in “off” mode), the following occurs: First, on-demand servers that are currently on
duty but idle go off duty immediately. Second, if there are χ1 idle permanent servers and χ2 busy
on-demand servers, min{χ1, χ2} of these on-demand servers are chosen to hand over their jobs to an
idle permanent server and go off duty. Third, any on-demand servers that are still busy after these
hand-overs will either finish the task at hand or be chosen to transfer the remaining work to the next
available permanent server, whichever comes first, and then go off duty. Based on this arrangement,
some on-demand servers may still be busy processing jobs even after the system enters “off” mode.
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When an incoming job sees both a permanent and an on-demand server idle, the job is sent to a
permanent server. Finally, all on-demand servers are assumed to exhibit the same service pattern as
permanent servers, so service times at those on-demand servers are also exponentially distributed
with rate parameter µ.

To ensure a well-defined system model, it is essential to specify a job scheduling rule that will
determine which job to serve when a server (either permanent or on-demand) becomes available while
jobs from multiple classes are waiting. An admissible scheduling rule must be non-anticipating (unable
to utilize future information), non-idling, and maintain the first come, first serve (FCFS) principle
within each class. Specifically, non-idling means that if there is an available server (permanent or
on-demand), no job should wait in the queue. Mathematically, this implies that the number of busy
servers (permanent or on-demand) at time t can be expressed as X(t)∧ (N0 + Ŷ (t)), where X(t) and
Ŷ (t) denote the number of jobs in the system (either being served or waiting) and the number of
on-demand servers on duty at time t, respectively. Accordingly, the cumulative number of service
completions up to time t, denoted as D(t), can be expressed as

D(t) = Πd

(
µ

∫ t

0

[
X(u)∧ (N0 + Ŷ (u))

]
du
)
,

where Πd is a unit-rate Poisson process that is independent of any other process.

3.2. Costs and Decisions

The primary purpose for incorporating on-demand capacity into service systems is to balance high
service quality with staffing costs. This requires the establishment of a cost structure that reflects
this tradeoff. Specifically, we define cp as the average cost of hiring a permanent server. In addition to
this cost, a variable cost of co is incurred only for the duration that an on-demand server is on duty.
Moreover, a fixed cost of C is incurred each time the system transitions from “off” to “on” mode. In
a call center, this fixed cost covers disutilities that arise from administrative effort associated with
the on-boarding process, which includes activities such as sending invites and setting up payroll for
those who accept the invite. Indeed, through conversations with the call center manager at Company
A, we learned that while payroll setup can be automated, the mass invitation needs to be initiated
manually by the system operator, who also monitors the onboarding process to ensure it is smooth
and error-free. However, the fixed cost may also be used to operationalize disutilities associated with
the mental workload of on-call agents, as we learned from our conversation with the call center. To
incorporate this, it is sufficient to link the fixed cost to the pool size (K) as well, but doing so will not
fundamentally affect our solution approach. Lastly, to account for the disutility of job abandonment,
a penalty cost of ri is assigned to each class-i abandonment.
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The two types of operational decisions are on-demand staffing and job scheduling. On-demand
staffing involves switching between different operating modes. The transition between modes is
instantaneous, and there is no limit to the number of times the operating mode can be changed. Job
scheduling determines the order in which jobs are processed when a server (permanent or on-demand)
becomes available while there are jobs from more than one class waiting. This constitutes an additional
decision. If there is only one job class, the joint on-demand staffing and scheduling control is reduced
to on-demand staffing only. Over a longer time horizon, the system manager must make a tactical
decision about the number of permanent servers to hire and the size of the on-call pool.

3.3. Managerial Objective(s)

The system manager faces a two-stage decision problem. The first-stage problem seeks to find N0 and
K in order to minimize

cpN0 + Γ(N0,K), (1)

where Γ(N0,K) denotes the optimal objective value of the second-stage problem to be formally
introduced below.

The second-stage problem aims to find a joint admissible on-demand staffing and job scheduling
policy. Specifically, its objective is to minimize

lim sup
t→∞

1
t
E
[

I∑
i=1

riRi(t) + co

∫ t

0
Ŷ (u)du+CΞ(t)

]
, (2)

where we have defined Ξ(t) to be the total number of entry requests sent up to time t. It is worth
emphasizing that the aforementioned quantities are associated with a system with N0 permanent
servers and an on-call pool of size K.

3.4. Exact Approach

When N0 and K are fixed, the second-stage problem (2) can be modeled as a Markov decision process
(MDP) with I + 2 dimensions. Of these dimensions, I describe the queue contents and the total
number of jobs in the system; one indicates the system mode; and one accounts for the number of
on-demand servers on duty. §EC.3 of the e-companion provides the detailed formulation. In theory,
we can solve these MDPs to obtain Γ(N0,K) for all choices of N0 and K, and then select values of
N0 and K that minimize the mathematical expression in (1) to obtain the solution to the first-stage
problem. However, solving each MDP can be computationally prohibitive, even for the single-class
problem, due to the curse of dimensionality, not to mention the task of solving the entire two-stage
decision problem effectively.

To address these challenges, we identify a limit regime in which the second-stage problem (2) can
be approximated as a DCP, which provides greater analytical tractability and reduces computational
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complexity. In the next section, we will focus on the formulation and solution of this DCP, based on
which we propose a joint on-demand staffing and scheduling policy for the original system in §5.

4. Diffusion Analysis
In §4.1, we first formulate and solve a DCP that approximates the second-stage problem. We then
introduce the diffusion approximation of the first-stage problem in §4.2.

4.1. Approximating the Second-Stage Problem

In §4.1.1, we specify the appropriate scaling condition, which leads to a controlled diffusion that
approximates the number of jobs in the system (with centering). We characterize the solution to the
DCP via the associated Bellman equation in §4.1.2. We describe our recommended policy based on
the DCP solution in §5 later.

4.1.1. The DCP formulation. To arrive at the DCP, we need to identify a limit regime under
which the system state can be approximately described by a diffusion process. To that end, we set
the number of permanent servers N0 according to the square root staffing rule, namely,

N0 = λ/µ+ β
√
λ/µ for some β ∈R. (3)

The scaling condition implies that by solely relying on the permanent servers, the service system
can maintain a moderate level of congestion (Ward 2012). Therefore, the system manager needs to
make only moderate capacity adjustments. More precisely, we view K to be O(

√
λ), so we consider

on-demand capacity of the form

K = κ
√
λ/µ for some κ∈R+. (4)

To proceed, let X̄(t) be the number of jobs in the system centered by the number of permanent
servers (i.e., X̄(t) =X(t)−N0). From the law of flow conservation, we find that

X̄(t) = X̄(0) +
∑
i

Ai(t)−D(t)−
∑
i

Ri(t), (5)

where X̄(0) denotes the number of jobs at time zero centered by N0. It may be worth pointing out
that [X̄(t)− Ŷ (t)]+ and [X̄(t)− Ŷ (t)]− represent, respectively, the number of waiting jobs and the
number of idling servers at time t.

To arrive at the desired diffusion approximation for X̄, we apply the strong approximations for
Poisson processes, similar to those in Kim et al. (2018), to get

Ai(t) = λit+
√
λiÂi(t) + εai (t) for i= 1, . . . , I, and

D(t) = µ

∫ t

0

[(
N0 + Ŷ (u)

)
∧
(
N0 + X̄(u)

)]
du+

√
λŜ(t) + εd(t),

(6)
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where Âi(t) and Ŝ(t) are independent standard Brownian motions; εai and εd are error terms arising
from the strong approximations, and they are an order of magnitude smaller than

√
λ over any finite

time horizon. Moreover, it is well known from the heavy-traffic theory that the abandonment processes
admit the following approximations:

Ri(t) = θi

∫ t

0
Qi(u)du+ εri (t) = θi

∫ t

0

[
X̄(u)− Ŷ (u)

]+
gi(u)du+ εri (t), i= 1, . . . , I, (7)

where εri are again error terms that are an order of magnitude smaller than
√
λ, and G := (g1, . . . , gI)

is a I-dimensional random element such that Qi(t) =
[
X̄(t)− Ŷ (t)

]+
gi(t) for all t≥ 0 and i= 1, . . . , I.

Intuitively, gi(t) is the fraction of queue contents kept in class i at time t, so G reflects the job
scheduling control process. With this intuition, it is plain to see that

G(t)∈A :=
{

q := (q1, . . . , qI)
∣∣∣∣∣
I∑
i=1

qi = 1, qi ≥ 0 for i= 1, . . . , I
}
. (8)

Because service completions by permanent servers take place at the rate O(λ) and any of such
service completions would allow a busy on-demand server (if any) to go off duty when the system is
in “off” mode, busy on-demand servers depart at a rate in the order of λ. However, since there are
only O(

√
λ) on-demand servers, the time required for the system to “remove” all on-demand servers

when it goes “off” is approximately 1/
√
λ. Hence, once the system enters “off” mode, all on-demand

servers on duty are removed from the system almost instantly when λ is sufficiently large. It follows
that when the system switches back to “on” mode, all K on-demand servers are expected to be in a
dormant state as long as the system does not chatter between “on” and “off” mode. Assuming all
K on-demand agents are currently off duty, the actual number of servers that will show up to work
follows a binomial distribution with parameters K and p the moment the system enters “on” mode.
This binomial distribution has a mean of Kp and a standard deviation of

√
Kp(1− p). Furthermore,

our scaling condition on K shows that the mean and standard deviation of this binomial distribution
are roughly of the order of

√
λ and λ1/4, respectively. As a diffusion analysis is intended to “wash out”

anything that is an order of magnitude smaller than
√
λ, it is expected that roughly Kp on-demand

servers will go on duty every time the system enters “on” mode. Formalizing these discussions, we
can approximate the process Ŷ by κp

√
λ/µY , where Y is a binary process that takes the value of one

(zero) when the system is in “on” (“off”) mode.
On substituting (6)–(7) into (5), ignoring all error terms, replacing Ŷ by the above-mentioned

approximation, and utilizing the scaling condition (3), we obtain a diffusion approximation for X̄,
denoted by Z, which is a solution to the following stochastic integral equation:

Z(t) =Z(0) +
∫ t

0
b (Y (u),Z(u),G(u)) du+

√
2λB(t), (9)
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where the drift-rate function b is defined by

b(y, z,q) :=−β
√
λµ−κp

√
λµy+µ

[
z−κp

√
λ/µy

]−
−

I∑
i=1

θi

[
z−κp

√
λ/µy

]+

qi, (10)

and B(t) is a standard Brownian motion. In the above, Y and G are on-demand staffing and job

scheduling control processes that are progressively measurable with respect to the filtration generated

by B; G satisfies (8) and

Y (t)∈ {0,1}. (11)

It is worth noting that the standard theory on stochastic integration and differential equations

guarantees a unique strong solution to (9) for a fixed stationary policy (Y,G). See, for example,

Theorem 7 in (Protter 2005, Chapter V).

Finally, upon replacing Ri in (2) with the right-hand side of (7) and ignoring all error terms, we

can approximate the objective therein by

lim sup
t→∞

1
t
E
[

I∑
i=1

riθi

∫ t

0

[
Z(u)−κp

√
λ/µY (u)

]+

gi(u)du+ coκp
√
λ/µ

∫ t

0
Y (u)du+C

∑
u≤t

[∆Y (u)]+
]
.

(12)

Thus, the DCP seeks to find some (Y,G) that minimizes (12) subject to (8), (9) and (11).

4.1.2. Solution to the DCP. We now apply Bellman’s principle of optimality to deduce the

best control strategy for the DCP. To that end, let v(y, z) denote the relative value function associated

with the DCP, where y ∈ {0,1}. With reference to the general control theory, we expect v(y, z) to

solve, in conjunction with some constant η?, the following Bellman equation:

min
{
λvzz(y, z) + min

q∈A

{
b(y, z,q)vz(y, z) +

[
z−κp

√
λ/µy

]+∑
i

riθiqi

}

+ coκp
√
λ/µy− η?, v(1, z) +C − v(0, z), v(0, z)− v(1, z)

}
= 0

(13)

subject to the boundary conditions, limz→−∞ vz(y, z) = 0 and limz→∞ vz(y, z) = r∗ for r∗ := mini ri.

In average cost dynamic programming, η? is interpreted as a guess for the optimal average cost.

In order to construct a solution to the Bellman equation, we hypothesize that at optimality, the

control Y has the following structure: If the system is currently in “off” mode, then it is optimal to

remain in that mode if Z is below a threshold, say z?1 , and switch to “on” mode once Z rises above

z?1 . If, however, the system is currently in “on” mode, then it is optimal to remain in that mode if Z

is above a certain level, say z?0 , and switch to “off” mode as soon as Z drops below z?0 . Clearly, this
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strategy is well-defined if z?0 < z?1 . Moreover, if this strategy, denoted as Y ?, is indeed optimal, we
should be able to find v0(z) := v(0, z), v1(z) := v(1, z) and η?, such that

λv′′0 (z) + min
q∈A

{
b(0, z,q)v′0(z) + [z]+

∑
i

riθiqi

}
= η? for z < z?1 , (14)

λv′′1 (z) + min
q∈A

{
b(1, z,q)v′1(z) +

[
z−κp

√
λ/µ

]+∑
i

riθiqi

}
+ coκp

√
λ/µ= η? for z > z?0 , (15)

v0(z?0) = v1(z?0) and v0(z?1) = v1(z?1) +C (16)

subject to the boundary conditions

lim
z→−∞

v′0(z) = 0 and lim
z→∞

v′1(z) = r∗, (17)

plus a set of optimality conditions derived from the “principle of smooth fit”:

v′0(z?0) = v′1(z?0) and v′0(z?1) = v′1(z?1). (18)

Because (14) and (15) do not involve the zero-order term, they can be reduced to a pair of first-order
differential equations by defining fy(z) := v′y(z), y = 0,1. The observation leads to the consideration of
the class of functions {f0(·, η);η ∈R} where f0(·, η) solves

λf ′0(z) + min
q∈A

{
b(0, z,q)f0(z) + [z]+

∑
i

riθiqi

}
− η = 0 (19)

subject to the boundary condition limz→−∞ f0(z) = 0, and the function class {f1(·, η);η ∈R} where
f1(·, η) is the solution to the following differential equation

λf ′1(z) + min
q∈A

{
b(1, z,q)f1(z) +

[
z−κp

√
λ/µ

]+∑
i

riθiqi

}
+ coκp

√
λ/µ− η = 0 (20)

subject to the boundary condition limz→∞ f1(z) = r∗. For future reference, denote the two function
classes by F0 and F1, respectively. We can also check that (16) is equivalent to∫ z?1

z?0

[f0(z, η?)− f1(z, η?)] dz =C, (21)

and appeal to (18) to obtain

f0(z?0 , η?) = f1(z?0 , η?) and f0(z?1 , η?) = f1(z?1 , η?). (22)

Therefore, the task of constructing a solution to the Bellman equation (13) boils down to seeking
variables η?, z?0 , and z?1 such that both (21) and (22) hold.

To spell out the conditions for the existence of the triple (η?, z?0 , z?1), we begin by considering two
related control problems, denoted as P0 and P1. Specifically, P0 (and P1) correspond to setting Y ≡ 0
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(and Y ≡ 1) in the previously formulated DCP, and seeking an optimal drift-rate control as represented
by G. Problem P0, in particular, corresponds to the scenario where the service system relies solely on
permanent servers, forgoing the option of using on-demand servers. Let ṽ0 and ṽ1 denote the relative
value functions associated with P0 and P1, respectively. Similar to (13), we expect that the function
ṽ0, along with some constant η0, solves the following differential equation:

λṽ′′0 (z) + min
q∈A

{
b(0, z,q)ṽ′0(z) + [z]+

∑
i

riθiqi

}
= η0 (23)

subject to the boundary conditions, limz→−∞ ṽ
′
0(z) = 0 and limz→∞ ṽ

′
0(z) = r∗. Similarly, we expect

that the function ṽ1 should satisfy, in conjunction with some constant η1, the differential equation

λṽ′′1 (z) + min
q∈A

{
b(1, z,q)ṽ′1(z) +

[
z−κp

√
λ/µ

]+∑
i

riθiqi

}
+ coκp

√
λ/µ= η1 (24)

subject to the boundary conditions, limz→−∞ ṽ
′
1(z) = 0 and limz→∞ ṽ

′
1(z) = r∗.

We interpret η0 and η1 as the optimal long-run average costs of P0 and P1, respectively. Also, from
our definitions of F0 and F1, we can see that the two constants, η0 and η1, if they exist, are such that
limz→∞ f0(z, η0) = r∗ and limz→−∞ f1(z, η1) = 0. Our next result is concerned with the properties of
the function classes, F0 and F1, as well as the solvability of Equations (23) and (24).

Lemma 1. (i) The function class F0 is well-defined, and f0(z, η) < f0(z, η′) for all z if η < η′; in
particular, there exists a unique η0 > 0 such that f0(z, η0) is strictly increasing and limz→∞ f0(z, η0) =
r∗, (ii) The function class F1 is also well-defined, and f1(z, η)> f1(z, η′) for all z if η < η′; in particular,
there exists a unique η1 > 0 such that f1(z, η1) is strictly increasing and limz→−∞ f1(z, η1) = 0.

Intuitively, the constant η?, if it exists, should satisfy η? ≤ η̄ := min(η0, η1), since both Y ≡ 0 and
Y ≡ 1 are admissible strategies. The following result is concerned with the number of cross points
that f0(·, η) and f1(·, η) can have for every η < η̄.

Proposition 1. (i) There exists
¯
η ≤ η̄ such that f0(·, η) and f1(·, η) do not intersect on [−∞,∞]

for η <
¯
η, have a point of intersection but do not cross each other on [−∞,∞] for η =

¯
η, and cross at

least twice for η ∈ (
¯
η, η̄). In particular, when η0 ≤ coκp

√
λ/µ− (β+κp)

√
λµr∗, f0(·, η) and f1(·, η) do

not intersect for all η < η̄ (i.e.,
¯
η = η̄). (ii) The two functions f0(·, η) and f1(·, η) can cross at most

twice for η ∈ (
¯
η, η̄).

Remark 1. In fact, the function graph of f1(·, η) lies uniformly above that of f0(·, η) for every η <
¯
η.

If, in addition, we have η0 ≤ coκp
√
λ/µ− (β+ κp)

√
λµr∗, then the above statement is extended to

hold for every η < η̄ (i.e.,
¯
η = η̄).

Remark 2. The proof of part (ii) of Proposition 1 relies on certain convexity/concavity properties
of the function families F0 and F1.
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According to Proposition 1, if
¯
η = η̄, then one can not find such η < η̄ that the two functions, f0(·, η)

and f1(·, η) will cross. We interpret this case to mean that, regardless of how small the fixed cost C is,

switching is never optimal. However, if
¯
η < η̄, then f0(·, η) and f1(·, η) will cross at exactly two points

for all η ∈ (
¯
η, η̄). We interpret this case to be that, for a sufficiently small fixed cost, it is optimal to

switch between the two modes from time to time. Also, we note that in the latter scenario, f0(·, η̄)

and f1(·, η̄) not only touch at z =−∞ or z =∞ but also cross at some finite point if η0 6= η1; in the

case that η0 = η1, f0(·, η̄) and f1(·, η̄) must touch at both z =−∞ and z =∞. In either case, denote

by z̄0 and z̄1 the two points of intersection and define C̄ :=
∫ z̄1
z̄0

[f0(z, η̄)− f1(z, η̄)]dz. Assuming
¯
η < η̄

for non-triviality, the next result characterizes the optimal joint control strategy for the DCP (12).

Theorem 1. Suppose C ≤ C̄. Then (i) there exists a triple (η?, z?0 , z?1) satisfying (21)–(22), and (ii)

the joint control strategy (Y ?,G?), where Y ?(t)∈ {0,1} is characterized by (z?0 , z?1) and

G?(t) := arg min
q∈A

∑
i

(ri− fY ?(t)(Z(t), η?))θiqi, (25)

is average-cost optimal for the DCP (12).

Remark 3. Since f0(·, η) is increasing in η and f1(·, η) is decreasing in η by Lemma 1, the intersection

area of these two functions (given that they cross) must be increasing in η. Hence, the intersection

area achieves its maximum C̄ when η = η̄, and for any C < C̄, there must exist η? < η̄ such that (21)

is satisfied. To provide an intuitive understanding of Theorem 1, we have displayed in Figure EC.1 of

the e-companion the dynamics of these two functions and their intersected area as η increases to η̄.

Assuming C = C̄, we can infer from the proof of Theorem 1 that the optimal η? = η̄ = min(η0, η1).

When η̄ = η0 = η1, z̄0 =−∞ and z̄1 =∞, implying that the system should remain in its initial mode

indefinitely. If η̄ = η1 < η0, z̄0 =−∞ and z̄1 is finite, indicating that it is optimal to stay in the “on”

mode, from the start, or to switch from “off” to “on” once Z exceeds z̄1, with a cost identical to P1.

If η̄ = η0 < η1, z̄0 is finite and z̄1 =∞, suggesting that it is optimal to stay in the “off” mode from the

start or to switch from “on” to “off” once Z falls below z̄0, with a cost equivalent to P0. For C > C̄,

we interpret η? = η̄ = min(η0, η1) as the optimal strategy, and sequential switching is never optimal.

Thus, we should adopt the optimal policy of either P0 (if η0 < η1) or P1 (if η1 < η0). The following

proposition formalizes the last part of the foregoing discussion.

Proposition 2. If C > C̄, then η? = η̄ = min(η0, η1). If η0 < η1, the optimal joint control strategy

is characterized as Y ≡ 0 and G?
0 := arg minq∈A

∑
i(ri − f0(Z(t), η0))θiqi. On the other hand, if

η0 ≥ η1, the optimal joint control strategy is characterized as Y ≡ 1 and G?
1 := arg minq∈A

∑
i(ri −

f1(Z(t), η1))θiqi.
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4.2. Approximating the First-Stage Problem

It is noteworthy that the optimal objective value of the DCP (12) developed earlier depends on both
β and κ. In this light, we write η?(β,κ) to denote the optimal objective value of the DCP with given
parameters β and κ. We can then approximate the first-stage problem defined by (1) as one that
chooses β and κ to

minimize cpβ
√
λ/µ+ η?(β,κ). (26)

Specifically, the expression in (26) is obtained by first replacing N0 and K in (1) with their expressions
in (3) and (4), respectively, replacing Γ(N0,K) with its “diffusion approximation” η?(β,κ), and finally
subtracting the resulting expression by the constant cpλ/µ.

5. Policy Recommendation
In this section, we describe our solution procedure to the two-stage decision problem based on the results
from the previous section. Specifically, we provide staffing and scheduling policy recommendations for
the second-stage problem based on the DCP solution.

5.1. First Stage

Note that each (N0,K) corresponds to a pair of parameters (β,κ) that can be directly plugged
into (26) to obtain an approximate objective value of the first-stage problem (centered by cpλ/µ).
Thus, given a pool of candidate values for (N0,K), one can approximately evaluate their respective
first-stage objective values and seek a pair that leads to the minimum objective value.

5.2. Second Stage

With a slight abuse of notation, through this subsection, we denote the pair of parameters obtained
from the procedure as described in §5.1 by (β,κ).

5.2.1. Profitability of On-Demand Staffing. With the parameter pair (β,κ), along with
other model primitives, the system manager can use a two-layer decision framework to decide the
profitability of on-demand staffing:

• In the first layer, she computes the upper bound on wage rates as c̄ :=
√
µ/λη0/(κp) + (β +

κp)r∗µ/(κp), where η0, the theoretical average cost associated with P0, is uniquely determined by the
problem data and can be computed using the algorithm described in §EC.4.2 of the e-companion. If
the wage rate satisfies co ≥ c̄, then she knows from Proposition 1 that it is not profitable to make
short-term capacity adjustments, no matter how small the fixed cost C is.

• If co < c̄, then she proceeds to the second layer of decision and calculates the upper bound on fixed
cost, i.e., C̄, using the algorithm described in §EC.4.2 of the e-companion. If C ≥ C̄, she knows from
Theorem 1 that making short-term capacity adjustments is unprofitable at this fixed cost. However, if
C < C̄, then sequentially switching between different modes becomes profitable.
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When on-demand staffing is unprofitable, based on Proposition 2, the system manager uses the
static staffing control Y ≡ 0 or Y ≡ 1 and follows the associated scheduling control prescribed by G?

0 or
G?

1, whichever produces the lower average cost; these scheduling controls (for the original system) are
discussed in §5.2.3 below. Otherwise, she can obtain an optimal solution (f0(·, η?), f1(·, η?), η?, z?0 , z?1)
of the Bellman equation using the algorithm described in §EC.4.3 of the e-companion. In what follows,
we translate the optimal solution (f0(·, η?), f1(·, η?), η?, z?0 , z?1) to an implementable joint on-demand
staffing and scheduling policy for the original system. Moreover, we use x?0 := z?0 +N0 and x?1 := z?1 +N0

to denote the switching thresholds for the number-in-system process, namely, X.

5.2.2. On-Demand Staffing Control. When the system is in “off” mode, it should remain in
this mode until the number of jobs in the system, X, increases to dx?1e, at which point the best action
is to switch to “on” mode. Similarly, when the system is in “on” mode, the best action is to switch
from “on” to “off” mode only when X decreases to bx?0c.

5.2.3. Scheduling Control. When the system is in “off” mode and X = x, the target queue
length distribution vector q?0(x) prescribed by the control G? in Theorem 1 is

q?0,i(x) =
{

1, i= i?0(x)
0, i∈ {1, . . . , I}\i?0(x) , where i?0(x) := arg min

i∈{1,...,I}
{riθi− θif0(x−N0, η

?)} . (27)

Intuitively, i?0(x) is the “cheapest” class. When a server becomes available and there are jobs waiting,
i.e., x>N0, the system manager assigns processing priority to classes in descending order of the queue
length discrepancy Qi− (x−N0)q?0,i(x), i∈ 1, . . . , I. By the definition of i?0(x), the above scheduling
control is equivalent to assigning lowest priority to the class i?0(x), and assigning priority to other
classes in descending order of their respective queue length Qi. Similarly, when the system is in
“on” mode and X = x, the target queue length distribution vector q?1(x) is obtained by replacing
f0(x−N0, η

?) in (27) by f1(x−N0, η
?); that is,

q?1,i(x) =
{

1, i= i?1(x)
0, i∈ {1, . . . , I}\i?1(x) , where i?1(x) := arg min

i∈{1,...,I}
{riθi− θif1(x−N0, η

?)} .

When a server becomes available and there are jobs waiting, the system manager gives the class i?1(x)
the lowest priority and gives priority to other classes in descending order of their respective queue
lengths Qi. An actionable job scheduling rule can be derived in an analogous fashion based on the
control G?

0 or G?
1 for the situation where the system is expected to stay in “off” mode (Y ≡ 0) or “on”

mode (Y ≡ 1) forever, i.e., when on-demand staffing is unprofitable.

6. Discussion
In this section, we comment on two related aspects of our modeling and solution framework. Further
comments on possible extensions of the model are provided in §EC.5 of the e-companion.
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6.1. About the Asymptotic Regime

Our proposed approach is based on a diffusion approximation framework, which assumes an asymptotic
regime where the total demand rate and base capacity grow proportionally to infinity. In this regime,
parameters such as µ and θi, as well as cost parameters ri, cp, and co, remain constant. To set the
base capacity, we use the widely-used square-root staffing principle, derived from the fact that the
stochastic fluctuation of jobs in an M/M/∞ queue is approximately proportional to the square root
of the offered load. This principle serves as a hedge against stochastic uncertainty. The insights behind
this principle are formalized in Halfin and Whitt (1981), and have been extended to incorporate
customer abandonment (Garnett et al. 2002).

Borst et al. (2004) demonstrate how cost-related considerations can drive the square-root staffing
principle. Specifically, they show that a square-root staffing rule can optimally balance staffing costs
against service quality when the staffing cost and delay cost are comparable. Our use of the square-root
staffing formula aligns with their findings since cp and ri are comparable and do not scale with λ.
Moreover, under the scaling condition (3) and the assumption of exponential patience times, the rate
at which a job abandons a queue is proportional to the queue length, and queue lengths are typically
in the order of

√
λ. This implies that the abandonment cost is also of the order

√
λ. Furthermore,

because the on-demand capacity created by a pool of on-demand servers serves as an additional hedge
against stochastic uncertainty (in addition to the square-root safety staffing), the associated cost of
using the on-demand capacity should also be in the order of

√
λ. This justifies the scaling condition

(4) and implies that C should be of the order
√
λ, which we can formalize as C :=

√
λĈ, where Ĉ is a

constant that does not scale with λ.
Various authors have proposed alternative staffing rules that lead to different asymptotic regimes.

For example, an efficiency-driven regime can arise under constraint satisfaction, as in Mandelbaum
and Zeltyn (2009), where the consideration of the tail probability of delay leads to an alternative
staffing rule that makes both fluid- and diffusion-based analyses relevant; see also Liu and Whitt
(2012). Several studies have suggested that demand uncertainty may motivate deviations from the
square-root staffing principle in capacity planning decisions. For instance, Whitt (2006) explores a
fluid-based staffing approach that accommodates arrival-rate uncertainty and server absenteeism.
Bassamboo and Randhawa (2010) propose a newsvendor-based method effective in the presence of
high arrival-rate uncertainty. More recently, Hu et al. (2021) develop a two-stage staffing problem
involving larger arrival-rate uncertainty, employing a solution method incorporating stochastic fluid
approximation. Incorporating demand uncertainty into our model, similar to Hu et al. (2021), may
result in a different asymptotic regime than suggested by (3). This could require a different analytical
approach, such as fluid analysis. Exploring this direction could be valuable for future research, given
the empirical evidence indicating inherent stochastic uncertainty in the demand rate.
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6.2. About Policy Recommendations

Our methodology for seeking an asymptotically optimal control policy follows a well-established
procedure pioneered by Harrison (1988), involving three steps: (1) approximating the queueing control
problem by a DCP, (2) solving the DCP, and (3) interpreting the DCP solution in the context of the
original queueing system to obtain an effective control policy. The first step requires a condition of
balanced heavy loading, where properly scaled processes, typically using a scaling parameter n, are
replaced by diffusion processes representing the heavy-traffic limits. Two approaches can justify the
asymptotic correctness of a DCP-informed solution. The first approach rigorously proves asymptotic
optimality, but it is often technical and may warrant a separate paper. Examples of papers that
have employed this approach include Atar and Lev-Ari (2018) and Gao and Huang (2022), among
others. The second approach numerically compares the DCP-informed solution to the original problem
solution. This approach is commonly used in studies following Harrison’s work.

Similar to Kim et al. (2018), our work utilizes a modern approach known as “universal approxima-
tion,” which places less emphasis on scaling and re-scaling to obtain and interpret the diffusion-based
solution as an implementable policy for the original system. The theoretical foundations of this
approach are thoroughly discussed by Huang and Gurvich (2018). Our proposed policy is consistent
with the solution to the DCP. The policy emerging from the DCP aims to maintain the queue
contents at their respective targets, which are solutions to the minimization problem in (25). Although
queue lengths may temporarily deviate from their targets in the actual system, queues that exceed
their targets do not experience heavy traffic under our proposed scheduling rule (as these queues
exclusively seize all service resources, which are not shared with classes whose queue lengths fall
short of the targets). As a result, these queues have a net output rate of order λ, which allows the
“queue imbalance” to be corrected at a rate of order

√
λ. Therefore, for large enough λ, corrections

can be made almost instantly, showing that the proposed scheduling rule effectively operationalizes
the solution to the DCP.

7. Numerical Studies
In §7.1, we present experiment results for a single-class example to demonstrate the accuracy of our
proposed diffusion approximation with respect to the exact MDP and to highlight the significant
value of on-demand staffing in terms of cost savings in comparison to static staffing. In §7.2 we report
numerical findings for a two-class example to show how the on-demand staffing decision and the job
scheduling decision can be successfully integrated. We further show that when on-demand staffing is
present, the corresponding scheduling decision exhibits an unusual double-switching pattern. In §7.3,
we conduct a case study using real data from a US bank call center to illustrate how our proposed
framework can be implemented in practice, where we relax several modelling assumptions.
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Our simulations are based on 100 i.i.d. replications, which run for a time interval T of length 104

units of time. To allow the system to approach steady state, we include a warm-up period of length
T/5. To estimate the mean of a random variable ξ, we use the sample averages of the 100 values,
which are expected to be Gaussian, allowing us to construct a 95% confidence interval (CI).The
simulated mean is followed by the width of the CI in parentheses.

7.1. A Single-Class Example

We assume, without loss of generality (by way of scaling), that the mean service time is 1/µ= 1, and
the wage rate for each on-demand server is co = 1. In this single-class scenario, jobs arrive at the
system according to a Poisson process with a rate λ= 100. Each job has an exponentially distributed
patience time with a mean of 1/θ = 2, and each abandonment incurs a penalty cost of r = 5. The
base value for an on-demand server’s show-up probability is set at p= 0.75, while the base switching
cost is C = 15. To gain more insights, we vary p (or C) while keeping C (or p) fixed at its base value.
Finally, we set the time-average cost of hiring a permanent server as cp = 1. Since the nominal load of
this system is λ/µ= 100, we choose the candidate set for the number of permanent servers N0 as
{85,90, . . . ,115}, and the candidate set for the on-call pool size K as {2,7, . . . ,32} when solving for
the two-stage decision problem defined by equations (1) and (2).

7.1.1. Comparing with exact MDP. For single-class job systems, it is feasible to solve the
second-stage problem (2) using the exact MDP approach. The optimal long-run average cost and
staffing policy obtained from the MDP serve as a benchmark for testing the accuracy of our proposed
diffusion approach in approximating the second-stage problem.

Figure 1 presents the diffusion costs and MDP costs of the second-stage problem for all candidate
(N0,K) under different show-up probability p and switching cost C. Overall, the proposed diffusion
approach performs well and produces a small cost gap with respect to the exact MDP in most cases.
However, a closer inspection of Figure 1 reveals that the diffusion approximation is less accurate
either when N0 is significantly different from the nominal load or when the show-up behavior of
on-demand servers becomes uncertain, particularly when p= 0.5. Inaccuracy in the former scenario
can be attributed to deviations from the limit regime (3) under which the diffusion process is derived.
When N0 is far from the nominal load, the service system behaves more like it is operating in the
efficiency-driven or quality-driven regime. However, this inaccuracy should not impede the diffusion
approach from generating high-quality solutions to the first-stage decision problem. This is because it
is unlikely that the optimal N0 would deviate significantly from the nominal load, as demonstrated in
Table 1 below.

On the other hand, the inaccuracy in approximation in the latter scenario is due to an unexpected
structure of the optimal MDP staffing policy concerning the uncertain show-up behavior of on-demand
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(a) p= 1: Gap = 3.030% (b) p= 0.75: Gap = 4.904% (c) p= 0.5: Gap = 9.605%

(d) C = 5: Gap = 4.727% (e) C = 10: Gap = 4.782% (f) C = 20: Gap = 4.767%

Figure 1 Comparison between the theoretical second-stage costs computed from the proposed diffusion approach
and the exact MDP under different show-up probabilities p ∈ {1,0.75,0.5} and switching costs C ∈
{5,10,15,20} in the single-class example. The gap represents the absolute difference between the diffusion
cost and the MDP cost normalized by the MDP cost, averaged over all (N0,K) combinations.

servers. We report this finding in Figure 2 and discuss it next. Compared to the diffusion staffing
policy, which is entirely determined by two policy thresholds, bx?0c and dx?1e, monitoring the number
of jobs in the system, the optimal MDP staffing policy is more complex and depends on both the
number of jobs and the number of on-demand servers in the system. The proposed diffusion staffing
policy is almost identical to the optimal MDP policy when p= 1, as shown in Figures 2(a) and 2(d).
However, when p < 1, the optimal MDP policy has a more complex structure that is not captured by
the diffusion staffing policy, as shown in Figures 2(e) and 2(f). Specifically, the optimal MDP policy
includes a consecutive switching policy, where the system switches from “on” to “off” and then back
to “on” when the number of on-demand servers who show up to work is deemed insufficient. Although
this policy is optimal for the MDP, which assumes that each on-demand server will appear with
probability p in each round of invitation, it may perform poorly in practice because an on-demand
server that is unavailable in one round of invitation is likely to remain unavailable in the immediately
following time instance. In contrast, the diffusion approach leads to a highly interpretable policy with
structural insights that is more robust to modeling assumptions. Furthermore, the small cost gap in
Figure 1 indicates that the diffusion staffing policy is able to reap most of the benefits of the more
complex MDP policy.
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(a) p= 1: “Off” Mode
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(b) p= 0.75: “Off” Mode
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(c) p= 0.5: “Off” Mode
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(d) p= 1: “On” Mode
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(e) p= 0.75: “On” Mode
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(f) p= 0.5: “On” Mode

Figure 2 Comparison between on-demand staffing policies prescribed by the diffusion solution and the MDP
solution when the system is operating in the “off” mode (i.e., (a)(b)(c)) and “on” mode (i.e., (d)(e)(f))
under (N0,K) = (100,17) and p∈ {1,0.75,0.5} in the single-class example.

After studying the accuracy of the diffusion approximation, we compare the optimal first-stage

solutions obtained from the two approaches. Firstly, we compute the theoretical first-stage costs for

each candidate (N0,K) based on the theoretical second-stage costs obtained in Figure 1. Then, we

choose the cost-minimizing (N0,K) under each approach. To investigate the actual cost performances

of these obtained solutions, we implement the on-demand staffing policies prescribed by either the

diffusion or MDP solution via simulations. The results are summarized in Table 1. We observe that

the diffusion approach produces optimal solutions that are similar or identical to those of the MDP

approach in all cases. Even when the optimal solutions do not coincide, the resulting simulated

first-stage costs are almost the same, with a gap of less than 0.1%. This phenomenon can be attributed

to the relatively “flat” first-stage cost surface as a function of (N0,K) near its minimum point, which

makes it insensitive to small perturbations around the optimal solution. However, such flatness is only

a local property around the minimum point since the difference between the best-case and worst-case

first-stage costs can be quite significant, up to 40% as reported in Figure EC.4 of the e-companion.

These findings demonstrate the value of solving the two-stage decision problem and the effectiveness

of our proposed diffusion approach in providing near-optimal solutions.
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Table 1 The optimal first-stage solutions (N0,K) obtained from the diffusion and MDP approaches, together with
the corresponding simulated first-stage costs under different p and C in the single-class example. The simulated

first-stage problem cost is a sum of the deterministic capacity planning cost cpN0 and the simulated second-stage cost.
When simulating the second-stage cost under the diffusion (resp. MDP) approach, on-demand staffing policy

prescribed by the diffusion (resp. MDP) solution is implemented.

p C
Optimal First-Stage Solution (N0,K) Simulated First-Stage Problem Cost Under Optimal Solution

Diffusion MDP Diffusion MDP Gap (%)
1 15 (100,12) (100,17) 100 + 11.160(.0359) 100 + 11.170(.0352) < 0.1

0.75 5 (100,17) (100,17) 100 + 9.271(.0344) 100 + 9.174(.0335) < 0.1
0.75 10 (100,17) (100,17) 100 + 10.354(.0317) 100 + 10.321(.0355) < 0.1
0.75 15 (100,17) (105,22) 100 + 11.211(.0329) 105 + 6.228(.0303) < 0.1
0.75 20 (105,22) (105,22) 105 + 6.581(.0342) 105 + 6.540(.0319) < 0.1
0.5 15 (100,27) (105,32) 100 + 11.247(.0430) 105 + 6.222(.0338) < 0.1

As an additional note, we experimented with different choices of cp, the time-average cost of hiring
a permanent server, and found that the optimal first-stage solution may prescribe K = 0 when cp is
small. This implies that if the cost of a permanent workforce is lower than that of an on-demand
workforce, a company should forego the on-demand workforce option entirely. Although we presented
the most interesting parameter setting in this study, the decision-maker could readily use our proposed
two-stage decision framework to determine the profitability of an on-demand workforce at the tactical
capacity planning level.

7.1.2. Comparing with static staffing policies. At the operational level, on-demand staffing
can yield significant cost reductions, regardless of whether the capacity decision (N0,K) is optimal or
not. To demonstrate this, we compare on-demand staffing with two meaningful benchmarks: the static
“off” policy and the static “on” policy. The former policy relies solely on the N0 permanent servers,
while the latter always exerts [Kp] on-demand servers in addition to the N0 permanent servers, where
[x] denotes the nearest integer to x∈R+. We fix p as its base value 0.75. For each candidate (N0,K),
we use the numerical algorithms described in §EC.4.2 of the e-companion to compute the theoretical
second-stage costs η0 and η1 of the two static policies, as well as the maximum switching cost C̄ for
on-demand staffing to be worthwhile.

The results are reported in Figure 3. We observe that the static “on” policy has better performance
than the static “off” policy when N0 is small. However, when N0 is large, the static “off” policy
becomes better than the static “on” policy, as the latter continuously incurs additional labor costs at
the rate co[Kp]. For a fixed on-call pool size K, we observed that the maximum switching cost C̄ first
increases and then decreases as N0 increases. The reason for this trend is that when N0 is too small
(resp. large), it is preferable to stick to the static “on” (resp. “off”) policy to prevent the system from
being too congested (resp. idling). Therefore, to make the on-demand staffing policy worthwhile, the
switching cost needs to be sufficiently small in these cases.
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(a) (b)

Figure 3 (a) Theoretical second-stage costs of the static “off” policy and the static “on” policy; and (b) the
maximum switching cost C̄ for on-demand staffing to be worthwhile in the single-class example.

We utilize the numerical algorithm outlined in §EC.4.3 of the e-companion to calculate the theoretical

second-stage cost η? of the on-demand staffing policy, along with the policy thresholds bx?0c and dx?1e,

for each candidate (N0,K) where on-demand staffing is found to be worthwhile. Figure 4 displays the

percentage reduction in second-stage cost achieved by our proposed policy under different switching

costs. Our findings demonstrate that the on-demand staffing policy results in significant cost savings

over a broad range of candidate (N0,K), even reaching up to 40% in some instances. However, it is

not surprising that the cost savings diminish as the switching cost increases.

(a) C = 5 (b) C = 10 (c) C = 15 (d) C = 20

Figure 4 Reduction in second-stage cost (%) achieved by the proposed on-demand staffing policy compared to the
best possible static staffing policies under different (N0,K) and switching costs C ∈ {5,10,15,20}.

Table 2 Structure and simulated performances of the proposed on-demand staffing policy under
(N0,K) = (100,17) and different switching cost in the single-class example in comparison to the static staffing policies.

C Diffusion Cost Simulated Cost Cost Reduction (%) Staffing Cost Switching Rate (bx?
0c,dx?

1e)
5 9.077 9.271(.0344) 36.561 5.519(.0196) 0.229(.007) (97, 112)
10 10.196 10.354(.0317) 29.147 6.120(.0198) 0.174(.006) (95, 114)
15 11.060 11.211(.0329) 23.281 6.805(.0232) 0.146(.005) (93, 115)
20 11.505 11.906(.0399) 18.528 7.361(.0254) 0.124(.005) (91, 116)

Static “Off” 16.525 16.496(.0898) −12.882 0(0) 0(0) −
Static “On” 14.327 14.614(.0188) 0 13(0) 0(0) −
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We now zoom in the case where (N0,K) = (100,17) to conduct a detailed investigation of the
structure and simulated (second-stage) performances of both the on-demand and static staffing policies,
as presented in Table 2. Column 3 displays the simulated average costs of the three policies, which
closely align with their respective theoretical values η?, η0 and η1 shown in column 2. Column 4 confirms
the substantial cost reduction achieved by the proposed on-demand staffing policy. Furthermore,
as depicted in columns 5, 6, and 7, we observe that the threshold interval (bx?0c, dx?1e) expands as
C increases, resulting in less frequent switching between operating modes. However, the simulated
staffing costs (including both the wage and switching cost) continue to increase as C increases.

7.2. A Two-Class Example

We examine a two-class system in the following analysis. Class 1 jobs have the same attributes as
in the single-class scenario, except that the arrival rate is equally divided between the two classes,
such that λ1 = λ2 = 50. For class 2 jobs, we assume θ2 = 1.2 and r2 = 3, making them more expensive
(r2θ2 > r1θ1) and more impatient (θ2 > θ1). The on-demand server’s show-up probability and switching
cost are fixed at their base values of p= 0.75 and C = 15, respectively. All other problem data remains
the same as in §7.1.

We first replicate the procedure in §7.1 to solve the first-stage decision problem approximately, using
the diffusion approach. This approach returns an optimal solution of (N0,K) = (100,17). However,
in this scenario, obtaining the MDP-optimal solution becomes challenging for two-class systems.
We also repeat the comparison with static staffing policies. As in §7.1, on-demand staffing policies
yield significant cost savings over a broad range of (N0,K) values. Figure EC.5 in the e-companion
summarizes these results.

Next, we focus on the two-class system operating under optimal capacity (N0,K) = (100,17). Our
goal is to examine the joint on-demand staffing and job scheduling decision of this system. We
begin by calculating the Bellman equation solution (η?, x?0, x?1, f0(·, η?), f1(·, η?)) for this system. The
on-demand staffing decision is straightforwardly determined by the thresholds (bx?0c, dx?1e). To obtain
the job scheduling decision, let ` := (θ2r2− θ1r1)/(θ2− θ1). From §5, we know that for a given number
of jobs in the system, x, class 2 jobs should be prioritized in the “on” mode if f0(x−N0, η

?)< `. In
“off” mode, class 2 should be given priority if f1(x−N0, η

?)< `, while class 1 should be given priority
if not. Figures 5(a) and 5(b) display the relationship between the on-demand staffing and scheduling
decisions and the Bellman equation solution when the system is in “off” and “on” mode, respectively,
where the graphs of the functions f0(·, η?) and f1(·, η?) have been shifted to the right by N0, and the
green dashed horizontal line represents the line `= (θ2r2− θ1r1)/(θ2− θ1). For comparison, we also
show the scheduling decisions of the two static staffing policies in relation to their respective Bellman
equation solutions f0(·, η0) and f1(·, η1) in Figures 5(c) and 5(d).
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One intriguing discovery in Figure 5 is the unconventional structure of the proposed scheduling
rule when the system is in “off” state, as displayed in Figure 5(a). In situations where there is no
on-demand staffing, it is widely known that the optimal scheduling rule for exponential abandonment
and linear penalty settings is a dynamic index rule. In this rule, service priority may move from one
job class to another as the number of jobs in the system rises, and this type of priority switching, if it
occurs, can occur only once in a two-class system. This is precisely what is shown in Figures 5(c)
and 5(d), where the system utilizes a static staffing policy. However, in the presence of on-demand
staffing, priority switching can occur twice when the system is in “off” mode, even though there are
only two job classes in the system. In fact, as seen in Figure 5(a), when the system is in “off” mode,
priority shifts from class 2 to class 1 when the number of jobs in the system grows to 102, and then
switches back to class 2 from class 1 when x reaches 112.

From a mathematical standpoint, the double switching is caused by the non-monotonic behavior of
the function f0(·, η?), making it possible for the horizontal line `= (θ2r2− θ1r1)/(θ2− θ1) to intersect
f0(·, η?) twice. This type of double switching is not possible in a static staffing scenario, since the
functions f0(·, η0) and f1(·, η1) are guaranteed to be monotonically increasing. Such double switching
suggests a rich interplay between the staffing and scheduling decisions. The managerial insights behind
this interplay can be summarized as follows: In a system without on-demand staffing control, the
proposed scheduling rule dictates that priority be shifted away from the more expensive and impatient
class and toward a less expensive but more patient class in the hopes of the queue being drained faster
due to abandonment. However, in the presence of on-demand staffing, the first priority switching
occurs for the same reason as before. The second priority switching, which involves shifting priority
from the cheaper to the more expensive class, occurs because it is anticipated that as the queue grows
longer, a group of on-demand servers will join the system, resulting in a faster depletion of the queue.
Therefore, the optimal scheduling rule anticipates this increase in workforce and shifts the priority
back to the more expensive but impatient class.

Finally, we validate the benefit of this unusual double-switching scheduling rule by comparing
it with a competitive benchmark. This benchmark adopts the same staffing rule as the proposed
on-demand staffing policy but utilizes a different scheduling rule. Specifically, it applies the static “off”
(resp. “on”) scheduling policy when the system is “off” (resp. “on”), which is henceforth referred to as
the static scheduling rule. This enables the benchmark to isolate the impact of the staffing decision and
attribute any performance differences to the difference in scheduling rule. The comparison outcomes
are presented in Table 3. As in §7.1, simulated costs of the proposed policy and static staffing polices
are similar to their respective theoretical diffusion costs η? = 10.906, η0 = 12.514 and η1 = 14.275.
The first two rows of the table reveal that the double-switching scheduling rule yields a slight but
noteworthy reduction in abandonment cost when compared to the static scheduling rule. Additionally,
as the last two rows illustrate, the proposed policy outperforms the static staffing policies.
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(a) On-Demand Staffing and Scheduling: “Off” Mode
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(b) On-Demand Staffing and Scheduling: “On” Mode
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(c) Static “Off” Scheduling Policy
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Figure 5 Graphical display of (i) the on-demand staffing and scheduling policy, (ii) the static “Off” scheduling policy,
and (iii) the static “On” scheduling policy, and their relationships with the Bellman equation solutions
(η?, x?0, x?1, f0(·, η?), f1(·, η?)), f0(·, η0) and f1(·, η1) in the two-class example. The double switching in
scheduling priority observed in (a) is due to the non-monotonicity of the function f0(·, η?), which is
never possible in a static staffing scenario because the functions f0(·, η0) and f1(·, η1) plotted in (c) and
(d), respectively, must be monotonically increasing.

Table 3 Structure and simulated performances of (i) the proposed joint on-demand staffing and scheduling policy,
(ii) a benchmarking policy that uses the same staffing rule as the proposed one but a different scheduling rule, and (iii)

the two static staffing policies under (N0,K) = (100,17) in the two-class example.
Policy Simulated Cost Abandonment Cost Staffing Cost (bx?

0c,dx?
1e) “Off” Scheduling “On” Scheduling

Joint On-Demand Staffing and Scheduling 10.992(.0364) 5.065(.0200) 5.927(.0248) (93,115) Class 2→1 at 102, 1→2 at 112 Class 2→1 at 120
On-Demand Staffing + Static Scheduling 11.094(.0342) 5.156(.0222) 5.938(.0219) (93,115) Always prioritize class 1 Class 2→1 at 129
Static “Off” 12.731(.0505) 12.731(.0505) 0(0) − Always prioritize class 1
Static “On” 14.587(.0167) 1.587(.0167) 13(0) − Switch priority from class 2→1 at 129

7.3. A Case Study Using Real Data

We devote the remainder of this section to a case study using a real data set sourced from the Service
Enterprise Engineering (SEE) lab at the Technion Institute of Technology. The data set is about a US
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bank call center that operates 24/7 and receives, on average, 53,237 calls per day on weekdays while
receiving an average of 19,742 calls per day on weekends. The data set contains approximately 59
million records of call-level data from March 1, 2001, to December 31, 2001. For each call, this data
set records its waiting time in queue, service duration (which is zero if it is abandoned), and service
type from one of the six categories. These are Retail, Online Banking, Premier, Business, Consumer
Loans, and Telesales.

To illustrate the implementation of our proposed framework, we focus on a two-class setting,
where classes 1 and 2 represent retail banking and online banking, respectively. We fit abandonment
time distributions for the two classes based on abandoned calls with a waiting time greater than 5
seconds, which occurs in 99.9% of the observations. Figures EC.6(a) and EC.6(b) of the e-companion
demonstrate that the exponential distribution provides a good fit. The estimated abandonment
rates are θ1 = 0.66 and θ2 = 0.96 calls per minute. Similarly, we use exponential distributions to
fit the historical service times shown in Figures EC.6(c) and EC.6(d) of the e-companion, yielding
µ1 = 1/4.326 and µ2 = 1/5.654 calls per minute. To handle this non-identical service rate setting, we
use the moment-matching method, which is discussed in §EC.5.1. Given the significant difference
in call volumes between weekdays and weekends, we solve the proposed two-stage decision problem
separately for weekdays and weekends. However, we only present the results for weekdays in the
following. The arrival rate to the call center on weekdays can be estimated using a Poisson process
with a rate of λ= 18.485 calls per minute. We assume that λ1 = λ2 = 0.5λ. Since the nominal load of
the system is around 92, we choose the candidate set for N0 as 75,80, . . . ,105, while using the same
candidate set for K as in §7.1. The average salary of a call center agent in the USA is approximately
$15 per hour (TalentCom 2023). Therefore, we set cp = 0.25 dollars per minute and co = 1.4cp to
reflect the higher wage rate of an on-demand agent compared to a permanent agent. We assume that
the show-up probability of on-demand servers is p= 0.75. Finally, we set the cost for each abandoned
call as r1 = r2 = 18co, which is equivalent to 0.3 hours of salary for an on-demand agent, to reflect that
only 1.54% of customers abandoned the queue before an agent was free to serve them in the dataset.

We present results for two different switching costs, C = 5 and C = 10. Figures 6(a) and 6(d)
illustrate that the proposed on-demand staffing policy can significantly reduce costs when the number
of permanent servers, N0, is close to the nominal load. However, when N0 is too large or too small,
the on-demand policy performs similarly to the static “off” or “on” policies, respectively. Figures 6(b)
and 6(e) further demonstrate the benefits of on-demand staffing across a range of candidate (N0,K),
particularly when N0 is near the nominal load. We also report the theoretical first-stage costs of
the proposed policy obtained from the diffusion approach in Figures 6(c) and 6(f). We find that the
optimal first-stage solutions under both switching costs, C = 5 and C = 10, are (N0,K) = (100,12).
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(a) C = 5 (b) C = 5 (c) C = 5

(d) C = 10 (e) C = 10 (f) C = 10

Figure 6 (a)(d) Theoretical diffusion second-stage costs (dollars per minute) of the on-demand staffing and
scheduling policy and the two static staffing policies, (b)(e)percentage of reduction in second-stage cost
achieved by the proposed policy compared to the best possible static staffing police, and (c)(f) theoretical
first-stage cost of the proposed policy under different switching costs C = 5 and C = 10 in the real-data
case study. The optimal first-stage solutions when C = 5 and C = 10 are both (N0,K) = (100,12).

Next, we focus on the capacity setting (N0,K) = (100,12) to investigate the performance of the
proposed on-demand staffing and scheduling policy in solving the second-stage problem. To this end,
we compare the proposed policy, as well as the two static staffing policies, via simulations. We relax the

assumption that an on-demand agent will enter the system immediately by testing with different levels
of show-up delay after he or she accepts the invitation. The results are summarized in Table 4. Column
3 shows that the simulated costs of different policies are still close to their respective theoretical

diffusion costs [η?|C = 5] = 1.452, [η?|C = 10] = 1.677, η0 = 2.225 and η1 = 3.530. However, the cost
gaps are not as small as what we have observed in §7.1 and §7.2, due to the extra approximation error
resulting from the non-identical service rate setting. From columns 4 and 5, we see that abandonment
costs increase significantly as show-up delay increases, while staffing costs slightly decrease. This is
because show-up delay may hinder on-demand agents from dealing with unexpected demand surges

in a timely manner. With the presence of show-up delay, it is possible that surges in demand have
already passed because of massive abandonment at the moment on-demand agents are able to join
the system, which inflates the abandonment cost. On the other hand, on-demand agents tend to stay
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in the system for a shorter time due to show-up delay. This explains the slight decrease in staffing
cost since less wage is paid. Overall, show-up delay harms the effectiveness of on-demand staffing in
terms of cost savings. Nonetheless, the proposed on-demand policy is still able to outperform static
staffing policies under moderate levels of show-up delay. Compared with the best possible static
staffing policies, on-demand staffing leads to an annual savings of up to $450,964 and $315,360 when
the switching costs C = 5 and C = 10, respectively. Furthermore, column 6 shows that, on average,
on-demand agents are summoned every 19 minutes and 32 minutes when the switching costs C = 5
and C = 10, respectively. The decrease in the summoning frequency is aligned with the expansion of
the threshold interval (bx?0c, dx?1e) as C increases, as observed in the last column and in Table 2.

Table 4 Structure and simulated performances of the proposed joint on-demand staffing and scheduling policy
under different switching costs and show-up delays compared with the two static staffing policies under

(N0,K) = (100,12) in the real-world case study. The optimal scheduling rule is to prioritize class 2 for all policies. The
cost unit is dollars per minute.

Policy Simulated Cost Abandonment Cost Staffing Cost Switching Rate (bx?
0c,dx?

1e)

Proposed Policy
C = 5

Zero Delay 1.558(.0167) 0.776(.0111) 0.782(.00796) 0.0527(< .001)

(96,105)30-Second Delay 1.861(.0228) 1.187(.0157) 0.674(.00807) 0.0537(< .001)
60-Second Delay 2.039(.0220) 1.461(.0169) 0.578(.00647) 0.0540(< .001)
90-Second Delay 2.205(.0217) 1.695(.0176) 0.511(.00531) 0.0542(< .001)

Proposed Policy
C = 10

Zero Delay 1.816(.0188) 1.049(.0128) 0.768(.00977) 0.0313(< .001)

(94,107)30-Second Delay 2.047(.0214) 1.354(.0152) 0.693(.00834) 0.0315(< .001)
60-Second Delay 2.248(.0240) 1.604(.0176) 0.645(.00759) 0.0323(< .001)
90-Second Delay 2.300(.0243) 1.721(.0185) 0.579(.00710) 0.0317(< .001)

Static “Off” 2.416(.0300) 2.416(.0300) 0(0) 0 −
Static “On” 3.612(.0113) 0.462(.0113) 3.150(0) 0 −

8. Conclusion
This paper introduces a two-stage decision model to address the challenge of optimizing staffing levels
in a call center with an on-demand workforce while balancing labor costs and service levels. Due to
the complexity of the second-stage problem, approximation techniques are employed. The analysis
under heavy traffic yields an approximate joint on-demand staffing and scheduling strategy. The
on-demand staffing rule uses switching boundaries to determine when to call in or dismiss on-demand
agents, while the scheduling rule is a nested threshold rule that specifies the relative urgency of each
customer class. The results of extensive numerical experiments demonstrate significant cost savings
by solving the full two-stage problem compared to not using on-demand staffing.

Our model, which initially assumes a single on-call pool and two operating modes, can be enhanced
by introducing additional flexibility. This can be achieved by dividing the on-demand agents into
sub-pools, such as Tier-1, Tier-2, and so on, and adjusting the number of agents based on the system’s
congestion levels. We demonstrate this approach in §EC.7 through a numerical study, where we divide
a single on-demand pool into two sub-pools and adapt our solution approach to compute switching
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boundaries that allow the manager to switch between three different modes: permanent staff only,
permanent staff plus Tier-1 pool, and permanent staff plus both pools.

The study reveals two persistent patterns. First, operating with more than two modes, where
on-demand agents are added or removed in batches according to congestion levels, generates additional
value compared to using only two modes. Second, the marginal benefit diminishes significantly as the
number of modes increases. This aligns with the “power of two” phenomenon observed in operations
research literature. For example, in load-balancing supermarket models, systems with two choices
perform almost as effectively as those with global load knowledge (Mitzenmacher 2001). As another
example, in studying the problem of using dynamic pricing to maximize revenues in queueing systems
with price- and delay-sensitive customers, Kim and Randhawa (2018) show that a simple policy
of using only two prices (known as the two-price scheme) can achieve the majority of the benefits
of dynamic pricing. Therefore, we suggest that utilizing only two staffing levels may be the most
advantageous approach, as it can achieve significant cost savings compared to fixed staffing and is
straightforward to implement.

Solving an optimal switching problem with multiple modes is notoriously difficult, even with the
heavy-traffic approximation. It has been observed that the analytical approach becomes cumbersome
when dealing with more than two modes (Chernoff and Petkau 1978). A recent paper by Vande Vate
(2021) studies a problem that involves optimally controlling the drift of a Brownian motion with a
finite set of drift rates to minimize long-term average cost. Despite benefiting from an explicit formula
for the value function and favorably cost structure assumptions, the mathematical analysis therein is
still highly complex. Replicating this analysis in our setting with multiple modes would be even more
challenging, especially considering that our value function does not have an explicit expression.

Through conversations with the management of Company A’s call center, we learned that, while
additional flexibility is potentially beneficial, it is important to consider the flexibility-usability tradeoff.
This design principle posits that as a system’s flexibility increases, its usability decreases. Therefore,
our recommendation for the use of two modes may not only stem from tractability considerations but
also from the need to sacrifice some flexibility for simplicity, ultimately improving the usability of
the solution. Nonetheless, an interesting avenue for future research is to investigate the impact of
multiple operating modes on the setting under consideration and explore how additional flexibility
can help reduce operating costs.
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Electronic Companion

EC.1. Proofs of Key Results
For notational convenience, we will simply let p= 1 throughout this section (§EC.1) and the next
section (§EC.2). For p < 1, simply replace all κ’s below with κp, which has no effect on the validity of
the arguments or procedure used.

Proof of Lemma 1. To prove Lemma 1, we need the following auxiliary results whose proofs are
deferred to Appendix EC.2. Part (i) of Lemma 1 follows directly from Lemma EC.1-EC.2.

Lemma EC.1. If η < η′, then f0(z, η)< f0(z, η′) for all z ∈R.

Lemma EC.2. There exists a unique η0 > 0 such that limz→∞ f0(z, η0) = r∗ and f ′0(z, η0)> 0 for all
z ∈R.

For part (ii) of Lemma 1, the existence of η1 follows directly from Lemma EC.3.

Lemma EC.3. There exists a unique η1 > 0 such that limz→−∞ f1(z, η1) = 0 and f ′1(z, η1)> 0 for all
z ∈R.

To prove the desired monotonicity of f1(z, η) in η, we consider a class of functions {Wα(z, η), η ∈R}
that are solutions to (20) on [κ

√
λ/µ,∞) with no restriction to the right boundary condition but

with the left boundary condition Wα(κ
√
λ/µ, η) = α.

Lemma EC.4. For each α, there exists a constant η(α) such that limz→∞Wα(z, η(α)) = r∗; the
function Wα(z, η(α)) is unique and continuous. Moreover, Wα(z, η(α)) is strictly increasing on
[κ
√
λ/µ,∞) if α < r∗, strictly decreasing on [κ

√
λ/µ,∞) if α > r∗, and a constant function r∗ if

α= r∗.

Lemma EC.5. If α<α′, then Wα(z, η(α))<Wα(z, η(α′)) for all z ≥ κ
√
λ/µ.

Lemma EC.6. The mapping η(·) is continuous and strictly decreasing. Moreover, limα→∞ η(α) =−∞
and limα→−∞ η(α) =∞.

To see that f1(z, η) is decreasing in η, consider η1 < η2. Let η−1(·) denote the inverse mapping, which
is well defined by Lemma EC.6, and we have η−1(η1) > η−1(η2). That f1(z, η1) > f1(z, η2) for all
z ≥ κ

√
λ/µ follows from the fact that Wη−1(η1)(z, η1)>Wη−1(η2)(z, η2) for all z ≥ κ

√
λ/µ by Lemma

EC.5. To show the desired monotonicity of f1(z, η) in η for z ≤ κ
√
λ/µ, we next consider another

class of functions {U(z, η), η ∈R} that are solutions to (20) on (−∞, κ
√
λ/µ] with the right boundary

condition U(κ
√
λ/µ, η) = η−1(η). Since η1 < η2 and η−1(η1)> η−1(η2), that U(z, η1)>U(z, η2) for all

z ≤ κ
√
λ/µ follows from the comparison theorem for ordinary differential equations. We concludes

that f1(z, η1)> f1(z, η2) for all z ∈R. �
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Proof of Proposition 1. To begin, we need the following results that characterize the behaviors of
f0(z, η) and f1(z, η); their proofs are deferred to EC.2. For convenience, define β̄ :=

√
λµ(β+κ).

Lemma EC.7. For 0 < η < η0, f0(z, η) is strictly increasing on (−∞,mη) and strictly decreasing
on (mη,∞) for some mη > 0; for η = 0, f0(z, η) is a constant function 0 on (−∞,0] and is strictly
decreasing on (0,∞); for η < η0, limz→∞ f0(z, η) =−∞.

Proposition EC.1. For 0< η < η0, f0(z, η) is concave on [0,∞].

Lemma EC.8. For coκ
√
λ/µ− β̄r∗ < η < η1, f1(z, η) is strictly decreasing on (−∞, nη) and strictly

increasing on (nη,∞) for some nη < κ
√
λ/µ; for η = coκ

√
λ/µ− β̄r∗, f1(z, η) is strictly decreasing

on (−∞, κ
√
λ/µ) and is a constant function r∗ on [κ

√
λ/µ,∞); for η < η1, limz→−∞ f1(z, η) =∞.

Proposition EC.2. For coκ
√
λ/µ− β̄r∗ < η < η1, f1(z, η) is convex on (−∞, κ

√
λ/µ].

We note that the stated concavity/convexity properties in Propositions EC.1–EC.2 are crucial to the
proof of Proposition 1 part (ii), whose proof rely on Lemmas EC.7–EC.8.

Continuing our proof of Proposition 1, suppose η0 ≤ coκ
√
λ/µ− β̄r∗. From Lemmas EC.7–EC.8 it

follows that f0(·, η)< r∗ < f1(·, η) on [−∞,∞] for η < η̄ = min{η0, η1}. Therefore, f0(·, η) and f1(·, η)
do not intersect for η < η̄. Thus, without loss of generality, in the remainder of the proof we shall
assume η0 > coκ

√
λ/µ− β̄r∗.

We observe that the two functions f0(·, η̄) and f1(·, η̄) must coincide at z =−∞ or z =∞. If letting
η̂ := max

{
coκ
√
λ/µ− β̄r∗,0

}
, by Lemmas EC.7–EC.8, f1(z, η̂)− f0(z, η̂) > 0 for any z ∈ [−∞,∞].

Also, from Lemma 1 it follows that for any z, f0(z, η) is increasing in η and f1(z, η) is decreasing in η.
Therefore, there exists some

¯
η ∈ (η̂, η̄] such that f0(·, η) and f1(·, η) do not intersect for η <

¯
η, touch

for η =
¯
η, and cross at least twice for η ∈ (

¯
η, η̄). This completes the proof of part (i)

To establish part (ii), we will write f0 and f1 in place of f0(·, η) and f1(·, η), respectively, and let
f̃ := f0− f1. We intend to argue that f0 and f1 will cross at most twice for any η ∈ (

¯
η, η̄). Suppose,

by way of contradiction, that the two functions cross more than twice. Because f0(−∞)< f1(−∞)
and f0(∞)< f1(∞) due to Lemmas EC.7–EC.8, there must exist four zeros of f̃ , ẑ1 < ẑ2 < ẑ3 < ẑ4,
such that f̃ crosses the horizontal line y = 0 from below at ẑ1 and ẑ3 and from above at ẑ2 and ẑ4. On
the other hand, from (19) and (20) it follows that

λf̃ ′(z) =


coκ
√
λ/µ for all z such that z ≤ 0 and f̃(z) = 0,

λf ′0(z)−λf ′1(z) for z ∈ (0, κ
√
λ/µ),

coκ
√
λ/µ−κ

√
λ/µϕ(f1(z)) for all z such that z ≥ κ

√
λ/µ and f̃(z) = 0,

(EC.1)

where ϕ(x) := minq∈A {
∑
i [(µ− θi)x+ riθi] qi}. It is easy to see that −ϕ is convex. Also, since f1 is

monotonic on [κ
√
λ/µ,∞) by Lemma EC.8, −ϕ ◦ f1 is quasi-convex on [κ

√
λ/µ,∞). Furthermore,

for each fixed η ∈ (
¯
η, η̄), f0 is concave and f1 is convex on (0, κ

√
λ/µ). Therefore, f̃ ′ is decreasing on
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(0, κ
√
λ/µ). These, along with (EC.1), imply that for each η ∈ (

¯
η, η̄), the derivative function f̃ ′ can

change signs at most twice when restricted to the smaller domain comprising all its zeros. This means

that if f̃ crosses the horizontal line y = 0 at some point that is greater than ẑ3, it must have done

so from below, which leads to a contradiction. Therefore, f0 and f1 can cross at most twice for any

η ∈ (
¯
η, η̄). This completes the proof of part (ii). �

Proof of Theorem 1. First, let us prove part (i). For any η ∈ (
¯
η, η̄), by Proposition 1, the functions

f0 and f1 cross at two points. Let z0(η) < z1(η) denote two points where the functions f0 and f1

cross. When η→
¯
η, z1(η)− z0(η)→ 0 and

∫ z1(η)
z0(η) [f0(z, η)−f1(z, η)]dz→ 0. When η = η̄, z0(η) = z̄0 and

z1(η) = z̄1. Since for any z, f1(z, η) is decreasing in η and f0(z, η) is increasing in η, z0(η) is decreasing

in η and z1(η) is increasing in η. As a result,
∫ z1(η)
z0(η) [f0(z, η)− f1(z, η)]dz is increasing in η. Hence, as

η increases from
¯
η to η̄,

∫ z1(η)
z0(η) [f0(z, η)− f1(z, η)]dz increases from 0 to C̄ =

∫ z̄1
z̄0

[f0(z, η̄)− f1(z, η̄)]dz,

which is greater than C by the assumption. Hence, we conclude that there exists some η? ∈ (
¯
η, η̄) such

that
∫ z1(η?)
z0(η?) [f0(z, η?)− f1(z, η?)]dz =C. Denoting z?0 = z0(η?) and z?1 = z1(η?), we complete the proof

of part (i).

To establish part (ii), let v(0, ·) and v(1, ·) be such that (a) v(0, z?0) = v(1, z?0), (b) vz(0, z) =

f0(z, η?)1{z<z?1} + f1(z, η?)1{z≥z?1}, and (c) vz(1, z) = f0(z, η?)1{z≤z?0} + f1(z, η?)1{z>z?0}. By our con-

struction, v(y, z) and the constant η? collective solve the Bellman equation (13). Using the Itô–Tanaka

formula, we can see that

v(Y (t),Z(t)) = v(y, z) +
∫ t

0
(λvzz(Y (u),Z(u)) + b(Y (u),Z(u),G(u))vz(Y (u),Z(u))) du

+
√

2λ
∫ t

0
vz(Y (u),Z(u))dB(u) +

∑
u≤t

(v(Y (u+),Z(u))− v(Y (u),Z(u)))

This implies

I∑
i=1
riθi

∫ t

0

[
Z(u)−κ

√
λ/µY (u)

]+

gi(u)du+ coκ
√
λ/µ

∫ t

0
Y (u)du+C

∑
u≤t

[∆Y (u)]+

= v(y, z)− v(Y (t),Z(t)) +
∫ t

0

(
λvzz(Y (u),Z(u)) + b(Y (u),Z(u),G(u))vz(Y (u),Z(u))

+
I∑
i=1

riθi

[
Z(u)−κ

√
λ/µY (u)

]+

gi(u) + coκ
√
λ/µY (u)

)
du

+M(t) +
∑
u≤t

(
v(Y (u+),Z(u))− v(Y (u),Z(u)) +C[∆Y (u)]+

)
,

where M(t) is a stochastic integral defined as

M(t) =
√

2λ
∫ t

0
vz(Y (u),Z(u))dB(u).
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Because v satisfies (13), we obtain

v(y, z)− v(Y (t),Z(t)) + η?t≤
I∑
i=1

riθi

∫ t

0

[
Z(u)−κ

√
λ/µY (u)

]+

gi(u)du

+ coκ
√
λ/µ

∫ t

0
Y (u)du+C

∑
u≤t

[∆Y (u)]+−M(t).

Taking expectations, dividing both sides by t, and noting that M(t) has expectation 0, we get

η? ≤1
t
E
[

I∑
i=1

riθi

∫ t

0

[
Z(u)−κ

√
λ/µY (u)

]+

gi(u)du

+ coκ
√
λ/µ

∫ t

0
Y (u)du+C

∑
u≤t

[∆Y (u)]+
]

+ 1
t
E [v(Y (t),Z(t))] .

(EC.2)

To prove that the last term on the right-hand side of (EC.2) vanishes as t→∞, we need the following
lemma, whose proof is deferred to EC.2.

Lemma EC.9. Regardless of the choice of (Y,G), we have lim supt→∞ t−1E [Z(t)] = 0.

Now, by sending t→∞ in (EC.2) and using Lemma EC.9 plus the Lipschitz continuity of v in z,
we conclude

η? ≤ 1
t
E
[

I∑
i=1

riθi

∫ t

0

[
Z(u)−κ

√
λ/µY (u)

]+

gi(u)du+ coκ
√
λ/µ

∫ t

0
Y (u)du+C

∑
u≤t

[∆Y (u)]+
]
.

If (Y,G) is replaced by (Y ?,G?), all the preceding inequalities hold as an equality. By following the
same arguments as before, we can see that η? is the long-run average cost under the joint control rule
(Y ?,G?). Therefore, the proof is complete. �

Proof of Proposition 2. We will only prove the case where η̄ = η0 ≤ η1. The proof for the case where
η̄ = η1 ≤ η0 is similar.

Suppose η̄ = η0 ≤ η1. Let v(0, ·) and v(1, ·) be defined as follows: (a) v(0, z̄0) = v(1, z̄0), (b) vz(0, z) =
f0(z, η̄), and (c) vz(1, z) = f0(z, η̄)1{z≤z̄0}+ f1(z, η̄)1{z>z̄0}. From the proof of part (ii) of Theorem 1,
we know that it suffices to show that v(0, ·) and v(1, ·) constructed in this way satisfy (13) with η?

therein being η̄. With respect to v(0, z), we have by construction:

λvzz(0, z) + min
q∈A

{
b(0, z,q)vz(0, z) + [z]+

∑
i

riθiqi

}
= η0 = η̄ for all z ∈R.

With respect to v(1, ·), we have by construction:

λvzz(1, z) + min
q∈A

{
b(1, z,q)vz(1, z) +

[
z−κp

√
λ/µ

]+∑
i

riθiqi

}
+ coκp

√
λ/µ= η0 = η̄ for z ≤ z̄0,

and

λvzz(1, z) + min
q∈A

{
b(1, z,q)vz(1, z) +

[
z−κp

√
λ/µ

]+∑
i

riθiqi

}
+ coκp

√
λ/µ= η1 ≥ η̄ for z > z̄0.
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In addition, by our construction, we have v(0, z) = v(1, z) for all z ≤ z̄0,

v(0, z)− v(1, z) =
∫ z

z̄0
[f0(u, η̄)− f1(u, η̄)du]≤

∫ z̄1

z̄0
[f0(u, η̄)− f1(u, η̄)du] = C̄

for all z̄0 < z ≤ z̄1 =∞. Therefore,

−C <−C̄ ≤ v(1, z)− v(0, z)≤ 0 for all z ∈R.

Taken together, we can conclude that v(0, ·) and v(1, ·) constructed as above satisfy (13) with η?

therein being η̄. �

EC.2. Proofs of Auxiliary Results

Proof of Lemma EC.1. Towards proving part (i), we note that (19) admits an explicit expression
for z ≤ 0, and it is given by

f0(z, η) = η

λ

√
λ

µ

Φ
(√

µ
λ

(
z+ β

√
λ
µ

))
Φ′
(√

µ
λ

(
z+ β

√
λ
µ

)) , (EC.3)

where Φ denotes the cumulative distribution function of a standard normal random variable. It is plain
to see f0 is strictly increasing in η for each z ≤ 0. In particular, f0(0, η)< f0(0, η′) for η < η′. Then
existence of solution for f0(·, η) follows from the general theory of ordinary differential equations, and
f0(z, η)< f0(z, η′) for all z > 0 thanks to the comparison theorem for ordinary differential equations.
�

Proof of Lemma EC.2. The existence of η0 satisfying conditions stated in the proposition has
been established in Theorem 1 of Kim et al. (2018). Our equation is a special case of theirs. �

Proof of Lemma EC.3. The existence proof for η1 can be accomplished by mimicking the proof
of Theorem 1 in Kim et al. (2018). More precisely, we can construct a solution to (24) subject to the
two boundary conditions by pasting two functions together at z = κ

√
λ/µ instead of at the origin;

a careful examination of the analysis in Kim et al. (2018) indicates that the proof does not rely on
the specific value of the pasting point. However, we must have η1 > coκ

√
λ/µ since coκ

√
λ/µ is the

inherent running cost for the system to operate in “on” mode, regardless of any abandonment penalty.
�

Proof of Lemmas EC.4 - EC.5. The proofs to these two lemmas are essentially contained in
the the proof of Proposition 6.1 in Weerasinghe (2015) and therefore omitted. �

Proof of Lemma EC.6. To show that the mapping η(·) is continuous, consider an increasing
sequence {αn} with α being the limit. For ease of notation, we write Wαn(·, η(αn)) as Wn(·) and
η(αn) as ηn. We aim to show that ηn→ η(α) as n→∞. By Lemma EC.5, {Wn(x)} is an increasing
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sequence satisfying Wn(z)<Wα(z) for each fixed z. Hence W∞(z) := limn→∞Wn(z) is well defined
for each fixed z. From (20), note that (Wn(·), ηn) satisfies

λW ′n(z)− β̄Wn(z) +φ(z,Wα(z)) + coκ
√
λ/µ− ηn = 0 (EC.4)

subject to boundary conditions Wn(κ
√
λ/µ) = αn and limz→∞Wn(z) = r∗, where β̄ :=

√
λµ(β + κ)

and φ(z,w) := (z−κ
√
λ/µ) infq∈A {

∑
i qiθi(ri−w)}. Let a := κ

√
λ/µ. Integrating (EC.4) over [a, z]

yields
λ(Wn(z)−αn) =

∫ z

a

(
β̄Wn(s)−φ(s,Wn(s))− coκ

√
λ/µ+ ηn

)
ds. (EC.5)

Sending n→ in the above equation yields

λ(W∞(z)−α) =
∫ z

a

(
β̄W∞(s)−φ(s,W∞(s))− coκ

√
λ/µ+ η∞

)
ds.

On the other hand, by the definition of Wα and ηα we know that

λ(Wα(z)−α) =
∫ z

a

(
β̄Wα(s)−φ(s,Wα(s))− coκ

√
λ/µ+ η(α)

)
ds.

By the uniqueness result from Lemma EC.4, it follows that (W∞, η∞) must coincide with (Wα, ηα).
The case where {αn} decreases and converges to α can be analyzed in exactly the same way. Thus,
we have shown that η(·) is continuous.

We next show that η(α) is decreasing in α. To this end, we consider α1 >α2 and assume for the
sake of contradiction that η̂1 ≥ η̂2 for η̂1 := η(α1) and η̂2 := η(α2). By Lemma EC.4, we know that
there exist W1 :=Wα1 and W2 :=Wα2 such that

λW ′1(z)− β̄W1(z) +φ(z,W1(z)) + coκ
√
λ/µ− η̂1 = 0, (EC.6)

λW ′2(z)− β̄W2(z) +φ(z,W2(z)) + coκ
√
λ/µ− η̂2 = 0, (EC.7)

and limz→∞Wα1(z) = limz→∞Wα2(z) = r∗. Because∫ ∞
a

W ′1(z)dz = r∗−α1 < r∗−α2 =
∫ ∞
a

W ′2(z)dz,

there must exists z̄ > a such that W ′1(z̄)<W ′2(z̄). Upon subtracting (EC.7) from (EC.6) and evaluating
the resulting equation at z = z̄, we obtain

φ(z̄,W1(z̄))−φ(z̄,W2(z̄)) =−λ (W ′1(z̄)−W ′2(z̄)) + β̄ (W1(z̄)−W2(z̄)) + η̂1− η̂2. (EC.8)

Assume for the moment that β̄ ≥ 0. By our hypothesis, the right-hand side of the above equation is
positive. On the other hand, φ(z,w) is non-increasing in w for each z > a. Therefore, φ(z̄,W1(z̄))−
φ(z̄,W2(z̄))≤ 0, due to the fact that W1(z̄)>W2(z̄). This however leads to a contraction. Therefore,
we must have η1 < η2 when β̄ ≥ 0. If β̄ < 0, then we can define a′ := a− β̄/θ∗ for θ∗ := mini θi. It is
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straightforward to verify that φ̃(z,w) defined via φ̃(z,w) :=−β̄w+φ(z,w) is non-increasing in w for

each z > a′. Also, because∫ ∞
a′

W ′1(z)dz = r∗−W1(a′)< r∗−W2(a′) =
∫ ∞
a′

W ′2(z)dz,

there must exists z̃ > a′ such that W ′1(z̃)<W ′2(z̃). From (EC.8), we see that

φ̃(z̃,W1(z̃))− φ̃(z̃,W2(z̃)) =−λ (W ′1(z̃)−W ′2(z̃)) + η̂1− η̂2.

By our hypothesis, the right-hand side is strictly positive whereas the left-hand side is non-positive,

which is again a contradiction. To summarize, we have proved that η(α1)< η(α2) if α1 >α2.

To show that ηα→−∞ as α→∞, suppose by way of contradiction that η(α)→ η∗ >−∞ when

α→∞. Using (EC.4) and the definition of φ, we find that

λW ′α(z)≥
(
(z− a)θ∗+ β̄

)
Wα(z)− (z− a)ν− coa+ η∗ for z ≥ a,

where ν := maxi θiri. By applying the comparison principle for ordinary differential equations, we get

that

Wα(z)≥ e
1
λ

(
θ∗

(
z2
2 −az

)
+β̄z
) [
αe

1
λ

(
θ∗ a

2
2 −β̄a

)
+ 1
λ

∫ z

a

e
− 1
λ

(
θ∗

(
u2
2 −au

)
+β̄u
)

(η∗− (u− a)ν− coa) du
]

for z ≥ a. If follows that limz→∞Wα(z) =∞ for all large enough α. This, however, contradicts our

requirement that limz→∞Wα(z) = r∗. Therefore, we must have η(α)→−∞ as α→∞. That η(α)→∞

as α→−∞ can be proved in an analogous fashion. We leave it as an exercise. �

Proof of Lemma EC.7. We first show that for each η < η0, if f ′0(z, η) = 0 for some z ≥ 0, then z

is a local maximum. When there is no confusion, we suppress the dependence of f0 on η. Note that

for z ≥ 0, (19) is equivalent to

λf ′0(z)− β
√
λµf0(z) + zφ̂(f0(z)) = η, (EC.9)

where φ̂(w) := infq∈A {
∑
i qiθi (ri−w)} is a piecewise linear function that is differentiable at all but

finite break points. Let I?(z) := arg mini {θi(ri− f0(z))}. In the case that I?(z) only contains one

element, say, i?(z), w= f0(z) is not one of the break points; directly differentiating (EC.9) yields

λf ′′0 (z)−
(
β
√
λµ+ zθi?(z)

)
f ′0(z) + θi?(z)

(
ri?(z)− f0(z)

)
= 0.

When f ′0(z) = 0, we have f ′′0 (z) = θi?(z)
(
f0(z)− ri?(z)

)
< 0, since f0(z, η)< r∗ for each η < η0 by Lemma

1, and thus z is a local maximum. In the case that I?(z) contains more than one elements, we can



ec8 e-companion to Sun and Liu: Expanding Service Capabilities Through an On-Demand Workforce

always identify two elements therein, say, i?1(z) and i?2(z), so that φ̂(f0(z)) = θi?1(z)

(
ri?1(z)− f0(z)

)
=

θi?2(z)

(
ri?2(z)− f0(z)

)
, and that

φ̂(f0(z− ε)) = θi?1(z)

(
ri?1(z)− f0(z− ε)

)
φ̂(f0(z+ ε)) = θi?2(z)

(
ri?2(z)− f0(z+ ε)

)
for all sufficiently small ε > 0; note that i?1(z) and i?2(z) may coincide if f0(·) is non-monotonic at z.
With the above, one can evaluate (EC.9) at z− ε and z+ ε and subtract from one another before
dividing both sides by 2ε and letting ε→ 0+ to get

λ (f ′′0 )+ (z) =
θi?1(z)

(
f0(z)− ri?1(z)

)
2 +

θi?2(z)

(
f0(z)− ri?2(z)

)
2 +

(
β
√
λµ+

(
θi?1(z)

2 +
θi?2(z)

2

)
z

)
f ′0(z).

Using a similar argument on ε < 0, one can show that (f ′′0 )− (z) = (f ′′0 )+ (z). Therefore, we have shown
that z is a local maximum when f ′0(z) = 0 for both cases. It follows that if f ′0(ẑ)≤ 0 for some ẑ ≥ 0,
then f ′0(z) must be strictly decreasing on (ẑ,∞). From the proof of Lemma EC.1 we know that f0

admits an explicit expression (EC.3) for z ≤ 0, which allows us to find λf ′0(0) =
(
1 + β Φ(β)

Φ′(β)

)
η. Since

the function g(β) := 1 + β Φ(β)
Φ′(β) is positive for all β, f ′0(0) shares the same sign with η. Hence, f0(z, η)

must be strictly decreasing on (0,∞) for all η≤ 0. For η > 0, we observe that f0(z, η) can not be strictly
increasing on (0,∞), since otherwise f0(z, η) would grow to infinity or converge from below to r∗, which
contracts the assumption that η < η0. Therefore, there must exist a maximum point mη > 0 so that
f0(z, η) is strictly increasing on (0,mη) and decreasing on (mη,∞). The other properties of f0(z, η)
on (−∞,0) come directly from the explicit expression (EC.3). That limz→∞ f0(z, η) =−∞ for η < η0

can be proven by contradiction upon sending z→∞ in (EC.9), because we have limz→∞ f
′
0(z, η) = 0

but limz→∞ zφ̂(f0(z)) =−∞. �

Proof of Proposition EC.1. In what follows we fix the value of η ∈ (0, η0) and suppress the
dependence of f0 on η when there is no confusion. We aim to show that f0(z) is concave on (0,∞).
To begin, we first consider a single-class setting, under which (EC.9) simplifies to

λf ′0(z)− β
√
λµf0(z) + zθ(r− f0(z)) = η. (EC.10)

By defining f̃0(z) := r− f0(z), it follows from (EC.10) that f̃0 obeys the ODE

λf̃ ′0(z)− β
√
λµf̃0(z)− θzf̃0(z) = η̃, (EC.11)

where η̃ := −η − β
√
λµr. For a given boundary condition f0(0) := αη, f̃0(z) admits the explicit

expression

f̃0(z) = (r−αη)Φ′(
√
µ/θβ) + η̃/λ

∫ z
0 Φ′(

√
θ/λy+

√
µ/θβ)dy

Φ′(
√
θ/µz+

√
µ/θβ)

(EC.12)
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=
√
λθ(r−αη)Φ′(

√
µ/θβ)− η̃Φ(

√
µ/θβ) + η̃Φ(

√
θ/λz+

√
µ/θβ)√

λθΦ′(
√
θ/λz+

√
µ/θβ)

(EC.13)

:= δη + η̃Φ(
√
θ/λz+

√
µ/θβ)√

λθΦ′(
√
θ/λz+

√
µ/θβ)

, (EC.14)

for z ∈ [−∞,∞], where Φ(·) is the normal CDF and δη :=
√
λθ(r−αη)Φ′(

√
µ/θβ)− η̃Φ(

√
µ/θβ). Since

η ∈ (0, η0), we have f0(z)< f0(z, η0)< r for all z ≥ 0 and f ′0(0)> 0 by Lemma EC.7. In particular,

since f̃0(∞)> 0, it follows from (EC.14) that (C1) δη + η̃ > 0. Suppose now we extend (EC.10) to

[−∞,0] subject to the boundary condition f0(0) = αη. It can be shown that if f ′0(z) = 0 for some

z ≤ 0, then z is a local maximum. Since f ′0(0)> 0, it follows that f0(z) defined by (EC.10) is strictly

increasing on [−∞,0]. Therefore, we have f0(−∞) < αη < r, or equivalently, f̃0(−∞) > 0, which

implies (C2) δη > 0 in view of (EC.14).

From (EC.11) and its differential form, we obtain

λ2f̃ ′′0 (z) =
(
(β
√
λµ+ θz)2 +λθ

)
f̃0(z) + (β

√
λµ+ θz)η̃. (EC.15)

To show that f0 is concave on (0,∞), it suffices to show that (EC.15) is nonnegative for all z > 0.

Using the expression of f̃0(z) in (EC.14) and defining t :=
√
θ/λz +

√
µ/θβ, one can verify that

(EC.15) being nonnegative for all z > 0 is equivalent to

(t2 + 1) (δη + η̃Φ(t)) + tη̃Φ′(t)︸ ︷︷ ︸
�

≥ 0 for all t >
√
µ/θβ. (EC.16)

To establish (EC.16), we consider the case η̃≥ 0 and η̃ < 0 separately. When η̃ < 0, we use (C1) to see

�>−η̃ ((t2 + 1)(1−Φ(t))− tΦ′(t))> 0 for all t, since the function p(t) := (t2 +1)(1−Φ(t))−tΦ′(t)> 0

is positive for all t. When η̃≥ 0, we use (C2) to see �> η̃ ((t2 + 1)Φ(t) + tΦ′(t))≥ 0, since the function

h(t) := (t2 + 1)Φ(t) + tΦ′(t) is positive for all t.

With the above intuition, we next generalize the proof to accommodate a multi-class setting. Since

the function φ̂(w) is piecewise linear, for a given initial value f0(0) we can find z(0) := 0< z(1) < · · ·<

z(J̄−1) < z(J̄) :=∞ that partitions the positive real line into J̄ segments, and in the j th segment,

i.e., z ∈
(
z(j−1), z(j)), φ̂(f0(z)) follows the same rule φ̂(f0(z)) = θ(j)(r(j)− f0(z)) for z ∈

(
z(j−1), z(j)).

Intuitively, the “cheapest” class i?(z) remains the same in each segment, which allows us to define

θ(j) := θi?(z) and r(j) := ri?(z) for z ∈
(
z(j−1), z(j)). Let α(j)

η := f0(z(j−1)), j = 1, . . . , J̄ . It follows that in

the j th segment f0(z) evolves according to the ODE

λf ′0(z)− β
√
λµf0(z) + zθ(j)(r(j)− f0(z)) = η (EC.17)
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subject to the boundary condition f0(z(j−1)) = α(j)
η . We intend to show that f0(z) is concave in each

segment. To begin, let f̃ (j)
0 (z) := r(j) − f0(z) for z ∈

(
z(j−1), z(j)) and define η̃(j) :=−η− β

√
λµr(j),

j = 1, . . . , J̄ . It follows from (EC.12)-(EC.14) that f̃ (j)
0 (z) admits the explicit expression

f̃
(j)
0 (z) =

δ(j)
η + η̃(j)Φ

(√
θ(j)/λz+

√
µ/θ(j)β

)
√
λθ(j)Φ′

(√
θ(j)/λz+

√
µ/θ(j)β

) (EC.18)

for z ∈
(
z(j−1), z(j)), where we have defined

δ(j)
η :=

√
λθ(j)

(
r(j)−α(j)

η

)
Φ′
(√

θ(j)/µz(j−1) +
√
µ/θ(j)β

)
− η̃(j)Φ

(√
θ(j)/µz(j−1) +

√
µ/θ(j)β

)
.

We first show that (C1’) δ(j) + η̃(j) > 0. From the proof of the single-class case, (C1’) establishes the
concavity of f0(z) in segment j when η̃(j) < 0. To establish (C1’), we extend the ODE (EC.17) to
infinity while satisfying the boundary condition f0(z(j−1)) = α(j)

η ; we denote its solution by f (j,∞)
0 (z, η).

The solution family
{
f

(j,∞)
0 (z, η), η ∈R

}
is closely related to the following admissible scheduling rule:

it coincides with the optimal rule when Z is less that z(j−1), but when Z is above z(j−1), it becomes
a static priority rule that keeps all the work content in class i? (ẑ), where ẑ ∈

(
z(j−1), z(j)). Using

similar arguments, one can see that f (j,∞)
0 (z, η) must be increasing in η and there exists a unique

η
(j)
0 so that limz→∞ f

(j,∞)
0 (z, η(j)

0 ) = r(j), where η(j)
0 is to be interpreted as the long-run average cost

of this admissible rule. Since η < η0 by our assumption and η
(j)
0 ≥ η0 due to the optimality of η0

when Y ≡ 0, we have f (j,∞)
0 (∞, η) < f

(j,∞)
0 (∞, η(j)

0 ) = r(j). Therefore, we have f̃ (j)
0 (∞) > 0, which

implies (C1’) in view of (EC.18). Hence, f0(z) is concave in segment j when η̃(j) < 0. The case when
η̃(j) ≥ 0 needs more careful treatment. Ideally, we want to prove the analog of (C2), i.e., the condition
(C2’) δ(j)

η > 0. This condition (C2’) can be proven in a similar fashion as the single-class proof when
f ′0(z(j−1))≥ 0: one extends the ODE (EC.17) to the negative infinity subject to f0(z(j−1)) = α(j)

η and
observes that the solution must be strictly increasing on [−∞, z(j−1)) since f ′0(z(j−1))≥ 0, and thus we
have f̃ (j)

0 (−∞)> 0, which implies (C2’) in view of (EC.18). Next, we consider the case f ′0(z(j−1))< 0.
From Lemma EC.7, there exists 0<mη <∞ such that f0(z) is strictly increasing on (0,mη) and
strictly decreasing on (mη,∞), and we have f ′0(mη) = 0 and f ′′0 (mη)< 0. It follows that z(j−1) >mη

since f ′0(z(j−1)) < 0. We next show that f ′′0 (z) can not be positive on (mη,∞), which covers the
interval (z(j−1), z(j)). To this end, we differentiate (EC.9) twice on all but finite non-differential points
to see that

λf ′′′0 (z) = β
√
λµf ′′0 (z)− 2φ̂′(f0(z))f ′0(z)− zφ̂′(f0(z))f ′′0 (z),

where we used φ̂′′(x) = 0; the case of non-differential points can be treated in a similar way by resorting
to left and right limits as in the proof of Lemma EC.7. Since φ̂′(x)< 0 for all x∈R and f ′0(z)< 0 for
all z ∈ (mη,∞), it holds that f ′′′0 (z)< 0 whenever f ′′0 (z) = 0. Combined with f ′′0 (mη)< 0, it follows
that f ′′0 (z)≤ 0 for all z ∈ (mη,∞), and thus f0(z) is concave. �
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Proof of Lemma EC.8. The proof for Lemma EC.8 is analogous to the proof for Lemma EC.7.
Note that when z ≤ κ

√
λ/µ, (20) is equivalent to

λf ′1(z)− β
√
λµf1(z)−µzf1(z) = η− coκ

√
λ/µ. (EC.19)

By differentiating (EC.19) and utilizing the fact that f1(z, η) > f1(z, η1) > 0 for each η < η1, we
can show that if f ′1(z, η) = 0 for some z ≤ κ

√
λ/µ, then z is a local minimum. It follows that if

f ′1(ẑ)≤ 0 for some ẑ ≤ κ
√
λ/µ, then f1(z) must be decreasing on (−∞, ẑ). By Lemmas EC.4 and

EC.6, we know that for each η ≤ η(r∗) = coκ
√
λ/µ− β̄r∗, f1(z, η) is either strictly decreasing or a

constant function r∗ on (κ
√
λ/µ,∞). Hence, f1(z, η) must be strictly decreasing on (−∞, κ

√
λ/µ)

for each η≤ coκ
√
λ/µ− β̄r∗. For η1 > η > coκ

√
λ/µ− β̄r∗, since f ′1(coκ

√
λ/µ, η)> 0 by Lemma EC.4

and f ′1(z, η) can not be strictly increasing on (−∞, κ
√
λ/µ) (contradicting the assumption η < η1 if

otherwise), there must exists a minimum point nη <κ
√
λ/µ so that f1(z, η) is strictly decreasing on

(−∞, nη) and increasing on (nη,∞). �

Proof of Proposition EC.2. In what follows we fix the value of η ∈ (coκ
√
λ/µ− β̄r∗, η1) and

suppress the argument η in f1 when there is no confusion. We intend to prove the claim that f1(z)
is convex on (−∞, κ

√
λ/µ) for η ∈ (coκ

√
λ/µ− β̄r∗, η1). To begin, we solve (EC.19) subject to the

boundary condition f1(κ
√
λ/µ) = αη to obtain the following explicit expression for z ≤ κ

√
λ/µ

f1(z) =
√
λµαηΦ′(β+κ)− η̂Φ(β+κ) + η̂Φ(

√
µ/λz+ β)√

λµΦ′(
√
µ/λz+ β)

, (EC.20)

where η̂ := η − cκ
√
λµ and Φ(·) is the normal CDF. By Lemmas 1 and EC.8, it must holds that

f1(κ
√
λ/µ) > f1(κ

√
λ/µ, η1) > 0 and f ′1(κ

√
λ/µ) > 0, which translates to (C3) αη > 0 and (C4)

η̂+
√
λµ(β+κ)αη > 0. Moreover, because f1(z, η)> f1(z, η1)> 0 for all z ≤ κ

√
λ/µ by Lemma 1, we

must have (C5)
√
λµαηΦ′(β+κ)− η̂Φ(β+κ)> 0, since otherwise f1(−∞, η)≤ f1(−∞, η1) = 0.

From (EC.19) and its differential form we obtain

λ2f ′′1 (z) =
(
(β
√
λµ+µz)2 +λµ

)
f1(z) + (β

√
λµ+µz)η̂. (EC.21)

The remaining task is then to show that under conditions (C3)(C4)(C5), (EC.21) is nonnegative for
all z ∈ (−∞, κ

√
λ/µ). Using the expression of f1(z) in (EC.20) and defining t :=

√
µ/λz+ β, one can

verify that (EC.21) being nonnegative for all z ∈ (−∞, κ
√
λ/µ) is equivalent to

(t2 + 1)
(√

λµαηΦ′(β+κ)− η̂Φ(β+κ) + η̂Φ(t)
)

+ tη̂Φ′(t)︸ ︷︷ ︸
4

≥ 0 for all t∈ (−∞, β+κ). (EC.22)

To establish (EC.22), we consider the case η̂≥ 0 and η̂ < 0 separately. When η̂≥ 0, we use condition
(C5) to see that 4> (t2 + 1)η̂Φ(t) + tη̂Φ′(t)≥ 0, since the function h(t) := (t2 + 1)Φ(t) + tΦ′(t) is
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positive for all t. When η̂ < 0, we further consider the case β+κ≤ 0 and β+κ> 0 separately. When
η̂ < 0 and β+κ≤ 0, we use condition (C3) to see

4> (t2 + 1) (−η̂Φ(β+κ) + η̂Φ(t)) + tη̂Φ′(t).

Since −η̂ > 0, it suffices to show that the function k1(t) := (t2 + 1)Φ(β+κ)− (t2 + 1)Φ(t)− tΦ′(t) is
nonnegative for all t < β+κ, which, follows from the fact that k1(t) is decreasing on (−∞, β+κ) and
thus k1(t)> k1(β + κ) =−(β + κ)Φ′(β + κ)≥ 0 for all t < β + κ. Finally, when η̂ < 0 and β + κ > 0,
we use condition (C4) to see that

√
λµαη >−η̂/(β+κ), so we have

4> (t2 + 1)
(
−η̂Φ′(β+κ)

β+κ
− η̂Φ(β+κ) + η̂Φ(t)

)
+ tη̂Φ′(t).

Since −η̂ > 0, it suffices to show that the function k2(t) := (t2 +1)
(

Φ′(β+κ)
β+κ + Φ(β+κ)

)
−(t2 +1)Φ(t)−

tΦ′(t) is non-negative for all t < β + κ, which, follows from the fact that k2(t) is decreasing on
(−∞, β + κ) and thus k2(t) > k2(β + κ) = Φ′(β + κ)/(β + κ) > 0 for all t < β + κ. Since we have
addressed all the possible scenarios, the proof is complete. �

Proof of Lemma EC.9. Our goal is to seek two processes
¯
Z and Z̄ such that

¯
Z(t)

s.t.

≤ Z(t)
s.t.

≤ Z̄(t). (EC.23)

If both
¯
Z and Z̄ have a stationary distribution with a finite mean, then we are done with the proof.

To this end, let
¯
Z and Z̄ be two piecewise linear diffusion processes defined as

¯
Z(t) =Z(0)− (β+κ)

√
λµt+

∫ t

0

{
µ

[
¯
Z(u)−κ

√
λ/µ

]−
− θ∗

[
¯
Z(u)−κ

√
λ/µ

]+
}

du+
√

2λB(t)

and

Z̄(t) =Z(0)− β
√
λµt+

∫ t

0

{
µ
[
Z̄(u)

]−
− θ∗

[
Z̄(u)

]+}
du+

√
2λB(t),

respectively. Then the stochastic relations in (EC.23) follow immediate by our construction. That

¯
Z and Z̄ have a stationary distribution with a finite mean follows from Theorem 3 of Garnett et al.
(2002). This concludes the proof. �

EC.3. Exact MDP Formulation for the Second-Stage Problem
For fixed values of N0 and K, the second stage problem can be formulated as a continuous-time
Markov Decision Process (CTMDP) with a dimension of I+2. It requires I dimensions to describe the
total number of jobs in the system and queue contents, one dimension of binary process to describe
the staffing mode of the system (i.e., 0 for “off” mode and 1 for “on” model), and one dimension to
describe the number of on-demand servers in the system.
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The second-stage problem can be expressed as a continuous-time Markov Decision Process (CTMDP)
with I + 2 dimensions, where N0 and K are fixed values. I dimensions are allocated for the total
number of jobs in the system and the queue contents, and one for a binary process to define the
staffing mode (0 for “off” and 1 for “on”). Additionally, one dimension is allocated to indicate the
number of on-demand servers in the system.

EC.3.1. System States, Decisions and Cost Structure

At time t ≥ 0, the state of the queuing system is represented by a (I + 1)-dimensional vector,
denoted as (X(t),Q(t), Y (t), n(t)). Here, X(t) represents the total number of jobs in the system,
Q(t) := (Q1(t),Q2(t), . . . ,QI−1(t))> represents the queue lengths of the first I − 1 classes, Y (t)∈ 0,1
denotes the staffing mode indicator, and n(t) tracks the number of on-demand servers at time t. When
I = 1, the state descriptor Q(t) can be omitted, as discussed in Appendix EC.3.4.

Although the queue length of class-I at time t, denoted by QI(t), is not considered as a system state,
it can be obtained using the relation QI(t) = (X(t)−N0−n)+−

∑I−1
i=1 Qi(t), due to the non-idling

scheduling policy. The state space, which we denote by S, is given by

S :=

(X,Q, Y,n) : 0≤X ≤M,Q≥ 0,
∑

i∈[I−1]

Qi ≤ (X −N0−n)+, Y ∈ {0,1}, n∈ {0,1, . . . ,K}

 .
In the above,

∑
i∈[I−1]Qi = (X −N0−n)+−QI must be no greater than (X −N0−n)+ since QI ≥ 0.

Also, to ensure that the state space remains finite in the numerical study, we stipulate that the
total number of jobs in the system, denoted by X, is no greater than a constant value, M . This
truncation does not sacrifice realism as long as M is chosen to be large enough because queue lengths
are extremely unlikely to be very large in a queueing system with abandonment. Finally, n takes
value in the set {0,1, . . . ,K} due to the random show-up behavior of on-demand servers.

The decision epoch coincides with each state transition. The scheduling decision is represented by a
priority list l = (l1, l2, . . . , lI), a permutation of the class indices 1,2, . . . , I, where class-l1 (resp. class-lI)
has the highest (resp. lowest) priority. The on-demand staffing decision is captured by y ∈ {0,1},
where y = 0 (resp. y = 1) maintains (resp. switches) the current staffing mode. The scheduling decision
l affects the system dynamics in two ways. First, when a server becomes available due to service
completion and there are jobs waiting from multiple classes, the newly available server is paired with
the highest-priority class specified by l. Second, when the system transits to the “on” mode, newly
entering on-demand servers deplete the existing queue contents based on the class priority specified by
l. Specifically, suppose the current system state is (X,Q, Y,n). Define j∗ := arg minj{j ∈ [I]|Qlj > 0}
and i∗ := lj∗ . Here, i∗ ∈ [I] is the highest-priority class among classes with positive queue lengths. When
there is no confusion, we drop the dependence of i∗ on (Q, l) for clarity. Hence, when a server becomes
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available due to service completion, it will be paired with the job at the head of the class-i∗ queue. If
the set {j ∈ [I]|Qlj > 0} is empty, we let i∗ = 0 to indicate that there is no job waiting, and thus the
newly available server remains idle. Next, when the system transits to the “on” mode and brings in
na on-demand servers, these servers deplete the queue contents Q based on the scheduling decision l.
Let T (·|l, na) : RI−1

+ 7→RI−1
+ be a function that maps the current queue contents to the queue contents

after depletion by na on-demand servers under scheduling decision l. Suppose Q′ = T (Q|l, na). The
mapping T is defined by setting Q′l1 = (Ql1 − na)+ and Q′lj = (Qlj − (na −

∑j−1
k=1Qlk)+)+ for j ≥ 2.

Intuitively, the na on-demand servers first deplete the queue content of the highest-priority class, i.e.,
class-l1. If there are on-demand servers still available after this depletion, i.e., (na−Ql1)+ > 0, they
continue to deplete the second highest-priority class, i.e., class-l2, and so on.

In terms of the cost structure, when the system is in state (X,Q, Y,n), the congestion cost is
continuously incurred at a rate of

∑I
i=1Qiθiri. Additionally, the cost of staffing on-demand servers is

continuously incurred at a rate of nco. Finally, whenever the system transitions from the “off” staffing
mode to the “on” staffing mode, a fixed cost of C is incurred.

EC.3.2. Uniformization: The Embeded Discrete-Time MDP

We utilize the uniformization technique to convert the above CTMDP to its embedded discrete-time
MDP (DTMDP). Let α(X,Q, Y,n) denote the transition rate when the system is in state (X,Q, Y,n).
It follows that α(X,Q, Y,n) = λ+

∑
i∈[I] θiQi+min{X,N0 +n}µ. Letting θ̄ := maxi∈[I]{θi}, we choose

the uniformization constant ᾱ as

ᾱ := max
(X,Q,Y,n)∈S

α(X,Q, Y,n) =
{

λ+Mθ̄+N0(µ− θ̄), if µ≤ θ̄
λ+Mθ̄+ (N0 +K)(µ− θ̄), if µ> θ̄

.

We next detail the state transitions in the embedded CTMDP. Throughout, let ei denote a vector
with the ith component equal to one and all others equal to zero. The dimension of ei will be clear
from the context. Suppose the current system state is (X,Q, Y,n).

Job Arrival. With probability λi/ᾱ, a class-i job arrives in the system for i ∈ [I]. Note that the
quantity (X −N0−n)− tracks the number of idling servers.

• If the staffing decision is to remain in the current mode (i.e., y = 0), the system state becomes
(X + 1,Q + ei1{(X −N0−n)− = 0, i 6= I}, Y,n);

• If the system is currently in the “off” mode (i.e., Y = 0) and the staffing decision is switching to
the “on” mode (i.e., y = 1), each on-demand servers (of number K−n) in the pool accepts to join the
system with probability p, and thus the probability that the number of on-demand servers change
from n to n′ after the staffing mode transition is given by

pn,n′ :=
(
K −n
n′−n

)
pn
′−n(1− p)K−n′ for n′ = n,n+ 1, . . . ,K.
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Conditional on the event that the number of on-demand servers changes to n′ and the scheduling
decision is l, the system state becomes (X + 1, T

(
Q + ei1{(X−N0−n)− = 0, i 6= I}

∣∣l, n′−n),1{n′ >
0}, n′);

• If the system is currently in the “on” mode (i.e., Y = 1) and the staffing decision is switching to
the “off” mode (i.e., y = 1), permanent servers that are idle start to take over jobs from the hands
of on-demand servers who are currently busy, and the number of on-demand servers who are still
in the system after this takeover is min{(X + 1−N0)+, n}. Therefore, the system state becomes
(X + 1,Q + ei1{(X −N0−n)− = 0, i 6= I},0,min{(X + 1−N0)+, n}).

Job Abandonment. With probability θiQi/ᾱ, a class-i job abandons the system for i∈ [I].
• If the staffing decision is to remain in the current mode (i.e., y = 0), the system state becomes

(X − 1,Q− ei1{i 6= I}, Y,n);
• If the system is currently in the “off” mode (i.e., Y = 0) and the staffing decision is switching

to the “on” mode (i.e., y = 1), conditional on the event that the number of on-demand servers
changes to n′ (with probability pn,n′) and the scheduling decision is l, the system state becomes
(X − 1, T

(
Q− ei1{i 6= I}

∣∣l, n′−n),1{n′ > 0}, n′);
• If the system is currently in the “on” mode (i.e., Y = 1) and the staffing decision is switching to the

“off” mode (i.e., y = 1), the system state becomes (X − 1,Q− ei1{i 6= I},0,min{(X − 1−N0)+, n}).

Service Completion. With probability min{X,N0 +n}µ/ᾱ, a server finishes its on-hand service. If
the system is in the “off” mode but there are still on-demand servers on duty (i.e., Y = 0 but n> 0),
this service completion will cause a on-demand server to leave the system either by leaving directly or
after a job handover. Otherwise, suppose the scheduling decision is l. Recall that i∗ = i∗(Q|l) is the
highest-priority class among classes with positive queue lengths, and i∗ = 0 if all queues are empty.

• If the system is currently in the “off” mode (i.e., Y = 0) and the staffing decision is to remain in the
current mode (i.e., y = 0), the system state becomes (X−1,Q−ei∗1{i∗ 6= 0, i∗ 6= I,n= 0},0, (n−1)+);

• If the system is currently in the “off” mode (i.e., Y = 0) and the staffing decision is switching
to the “on” mode (i.e., y = 1), the system state becomes (X − 1, T

(
Q − ei∗1{i∗ 6= 0, i∗ 6= I,n =

0}|l, n′− (n− 1)+),1{n′ > 0}, n′) with probability p(n−1)+,n′ for n′ = (n− 1)+, (n− 1)+ + 1, . . . ,K;
• If the system is currently in the “on” mode (i.e., Y = 1) and the staffing decision is to remain in

the current mode (i.e., y = 0), the system state becomes (X − 1,Q− ei∗1{i∗ 6= 0, i∗ 6= I},1, n);
• If the system is currently in the “on” mode (i.e., Y = 1) and the staffing decision is switching to

the “off” mode (i.e., y = 1), the system state becomes (X − 1,Q− ei∗1{i∗ 6= 0, i∗ 6= I},0,min{(X −
1−N0)+, n}).

Self Transition. With probability 1−α(X,Q, Y,n)/ᾱ, the state fictitiously transits to itself due to
uniformization.
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EC.3.3. Bellman Equation

Let V : S 7→R and g ∈R+ be the relative value function and long-run average cost, respectively, for

the MDP formulation of the second-stage problem. Based on the DTMDP derived in the previous

section and with reference to the Bellman’s principle of optimality, we expect the solution pair (V, g)

to satisfy the following equation:

V (X,Q,0, n) + g/ᾱ

=
∑
i∈[I]

λi/ᾱ×min
{
V (X + 1,Q + ei1{(X −N0−n)− = 0, i 6= I},0, n),

C +
K∑

n′=n

pn,n′min
l
{V (X + 1, T

(
Q + ei1{(X −N0−n)− = 0, i 6= I}

∣∣l, n′−n),1{n′ > 0}, n′)}
}

+
∑
i∈[I]

θiQi/ᾱ×min
{
V (X − 1,Q− ei1{i 6= I},0, n),

C +
K∑

n′=n

pn,n′min
l
{V (X − 1, T

(
Q− ei1{i 6= I}

∣∣l, n′−n),1{n′ > 0}, n′)}
}

+ min{X,N0 +n}µ/ᾱ×min
{

min
l
{V (X − 1,Q− ei∗1{i∗ 6= 0, i∗ 6= I,n= 0},0, (n− 1)+)},

C +
K∑

n′=(n−1)+

p(n−1)+,n′min
l
{V (X − 1, T

(
Q− ei∗1{i∗ 6= 0, i∗ 6= I,n= 0}|l, n′− (n− 1)+),

1{n′ > 0}, n′)}
}

+ (1−α(X,Q,0, n)/ᾱ)×V (X,Q,0, n) +
∑
i∈[I]

Qiθiri/ᾱ+ con/ᾱ,

(EC.24)

and the equation

V (X,Q,1, n) + g/ᾱ

=
∑
i∈[I]

λi/ᾱ×min
{
V (X + 1,Q + ei1{(X −N0−n)− = 0, i 6= I},1, n),

V (X + 1,Q + ei1{(X −N0−n)− = 0, i 6= I},0,min{(X + 1−N0)+, n})
}

+
∑
i∈[I]

θiQi/ᾱ×min
{
V (X − 1,Q− ei1{i 6= I},1, n),

V (X − 1,Q− ei1{i 6= I},0,min{(X − 1−N0)+, n})
}

+ min{X,N0 +n}µ/ᾱ×min
{

min
l
{V (X − 1,Q− ei∗1{i∗ 6= 0, i∗ 6= I},1, n)},

min
l
{V (X − 1,Q− ei∗1{i∗ 6= 0, i∗ 6= I},0,min{(X − 1−N0)+, n})}

}
+ (1−α(X,Q,1, n)/ᾱ)×V (X,Q,1, n) +

∑
i∈[I]

Qiθiri/ᾱ+ con/ᾱ,

(EC.25)

where recall that the highest-priority class index i∗ = i∗(Q|l) depends on both the queue contents Q

and the scheduling decision l.
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EC.3.4. Special Case for I = 1

When I = 1, the system state can be described by (X(t), Y (t), n(t)), where 0≤X(t)≤M denotes the

number of jobs in the system, Y (t)∈ 0,1 indicates the staffing mode, and n(t) records the number of

servers currently on duty in response to on-demand requests. The queue length Q1(t) at time t can

be obtained as Q1(t) = (X −N0−n)+. In a single-class system, there is only one feasible scheduling

decision, which is to always prioritize class-1 jobs. Therefore, we have l= (1) and i∗(Q1|l) = 1{Q1 > 0}.

This observation greatly simplifies the equations (EC.24) and (EC.25), which are now given by

V (X,0, n) + g/ᾱ

=λ1

ᾱ
min

{
V (X + 1,0, n),C +

K∑
n′=n

pn,n′V (X + 1,1{n′ > 0}, n′)
}

+ θ1Q1

ᾱ
min

{
V (X − 1,0, n),C +

K∑
n′=n

pn,n′V (X − 1,1{n′ > 0}, n′)
}

+ min{X,N0 +n}µ
ᾱ

min
{
V (X − 1,0, (n− 1)+),C +

K∑
n′=(n−1)+

p(n−1)+,n′V (X − 1,1{n′ > 0}, n′)
}

+ ᾱ−α(X,0, n)
ᾱ

V (X,0, n) + Q1θ1r1 + con

ᾱ
,

(EC.26)

and

V (X,1, n) + g/ᾱ= λ1

ᾱ
min

{
V (X + 1,1, n), V (X + 1,0,min{(X + 1−N0)+, n})

}
+ θ1Q1 + min{X,N0 +n}µ

ᾱ
min

{
V (X − 1,1, n), V (X − 1,0,min{(X − 1−N0)+, n})

}
+ ᾱ−α(X,1, n)

ᾱ
V (X,1, n) + Q1θ1r1 + con

ᾱ
.

(EC.27)

When I = 1, the above Bellman equations can be solved using standard value iteration algorithm

to within ε−optimality. Let gε and Ṽ ε(X,Y,n) denote the algorithm return. Then, the ε−optimal

MDP cost is given by ᾱgε; the ε−optimal staffing decision is to switch from “off” to “on” when

Ṽ ε(X,0, n)>C+
∑K
n′=n pn,n′ Ṽ

ε(X,1{n′ > 0}, n′), and to switch from “on” to “off” when Ṽ ε(X,1, n)>

Ṽ ε(X + 1,0,min{(X −N0)+, n}).

EC.4. Numerical Algorithms

In §EC.4.1 we present a numerical algorithm for computing f0(·, η) and f1(·, η) for any given η ∈R.

This numerical algorithm will serve as the backbone in the algorithms for computing η0, η1 and C̄,

which we introduce in §EC.4.2. Finally, with η0, η1 and C̄ as inputs, we introduce in §EC.4.3 a binary

search algorithm in η for finding the optimal Bellman equation solution (η?, z?0 , z?1). As in §EC.1

and EC.2, we will use p= 1 throughout this section to ease notation. To account for p < 1, one can
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simply replace all instances of κ below with κp, which does not affect the validity of the arguments or

procedures used.

For the algorithmic parameters M,δ,∆ that appear below, we have set M = 2dλ/µe, δ = 0.001 and

∆ = 0.005 for all problem instances in the present study.

EC.4.1. Finite Difference Method for Computing f0(·, η) and f1(·, η)

For a given η, we next present a numerical algorithm for computing f0(·, η) and f1(·, η), which is based

on the Finite Difference Method. In what follows, we fix the value of η and suppress the argument η

in f0 and f1.

We consider a large enough interval [−M,M ] of the real line, over which f0(·) and f1(·) is solved.

We discretize the interval [−M,M ] using 2N + 1 points (zn)Nn=−N defined by zn = nδ, where δ =M/N

is the discretization precision, so that the point z−N (resp. zN ) corresponds to −M (resp. M) in the

real line.

Instead of solving f0(·) and f1(·) over the continuous interval, we solve the discretized approximation

(f0(zn))Nn=−N and (f1(zn))Nn=−N . For easy reference, we write f0,n = f0(zn) and f1,n = f1(zn). We

approximate the first derivative of a function at point zn by f ′(zn) = fn−fn−1
δ

. Hence, the discretized

version of (19) and (20) subject to their respective boundary conditions become

λ
f0,n− f0,n−1

δ
+ min

q∈A

{
b(0, nδ, q)f0,n + [nδ]+

∑
i

riθiqi

}
= η, n∈ [N ], (EC.28)

f0,−N = η√
λµ

Φ(−
√
µ/λNδ+ β)

Φ′(−
√
µ/λNδ+ β)

, (EC.29)

λ
f1,n− f1,n−1

δ
+ min

q∈A

{
b(1, nδ, q)f1,n +

[
nδ−κ

√
λ/µ

]+ I∑
i=1

riθiqi

}
+ coκ

√
λ/µ= η, n∈ [N ].

(EC.30)
f1,N = r∗. (EC.31)

where (EC.29) follows from the closed form (EC.3); (EC.31) serves as an approximation to the

boundary condition f1(∞) = r∗, and we have defined [N ] = {−N,−N + 1, . . . ,N}.

Suppose we have knowledge of the optimal queue length distribution vector q?0(nδ) =(
q?0,1(nδ), . . . , q?0,I(nδ)

)
that achieves the minimum in Equation (EC.28) for n ∈ [N ]. We can use

Equations (EC.28) and (EC.29) to compute (f0(zn))Nn=−N in a forward manner. Rearranging terms

in Equation (EC.28), we obtain the iterative equation

f0,n =
η− [nδ]+

∑
i riθiq

?
0,i(nδ) + λ

δ
f0,n−1

λ/δ+ b(0, nδ, q?0(nδ)) , n∈ {−N + 1, . . . ,N} . (EC.32)
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However, as q?0(nδ) is usually unknown, we begin with an initial guess q(0)
0 (nδ)∈A and replace q?0(nδ)

in Equation (EC.32) with q(0)
0 (nδ) to obtain the sequence

(
f

(0)
0 (zn)

)N
n=−N

. We then update the queue
length distribution vector as follows:

q
(1)
0 (nδ) = arg min

q∈A

{
b(0, nδ, q)f (0)

0,n + [nδ]+
∑
i

riθiqi

}
, n∈ [N ],

with which we can compute
(
f

(1)
0 (zn)

)N
n=−N

and update for q(2)
0 (nδ), n∈ [N ]. This procedure repeats

until the consecutive queue length distribution vectors stop changing, at which point we obtain q?0(nδ)
and the desired sequence (f0(zn))Nn=−N . Similarly, we can use Equations (EC.30) and (EC.31) to solve
for (f1(zi))Ni=−N in a backward manner. Rearranging Equation (EC.30), we get the iterative equation

f1,n−1 = δ

λ

[(
λ

δ
+ b(1, nδ, q?1(nδ))

)
f1,n +

[
nδ−κ

√
λ/µ

]+∑
i

riθiq
?
1,i(nδ) + coκ

√
λ/µ− η

]
. (EC.33)

This iterative equation holds for n in the range of {−N + 1, . . . ,N}. Here, q?1(nδ) is the optimal queue
length distribution vector in “on” mode, which is defined as q?1(nδ) =

(
q?1,1(nδ), . . . , q?1,I(nδ)

)
. We can

find q?1(nδ) by using a similar iterative updating approach as we did for q?0(nδ).

EC.4.2. Algorithms for Computing η0, η1 and C̄

Algorithm for computing η0. We begin by introducing an algorithm to compute η0. First, we
select two interval endpoints ηL < ηR such that f0(M,ηL) < r∗ −∆ and f0(M,ηR) > r∗ + ∆.These
function values can be computed using the algorithm described in §EC.4.1. In practice, we can
set ηL = 0 and increase ηR from

∑
i riθi/I by the power of two until the above condition is met.

Due to the monotonicity result from Lemma 1, we know that η0 ∈ (ηL, ηR). Next, we compute the
midpoint ηm := (ηL + ηR)/2 and evaluate f0(M,ηm). If f0(M,ηm)> r∗+ ∆, then by the monotonicity
result from Lemma 1, we know that η0 < ηm, and we shrink the interval by updating ηR← ηm. If,
instead, f0(M,ηm)< r∗−∆, then we know that η0 > ηm by the monotonicity result, and we shrink
the interval by updating ηL← ηm. This process guarantees that the interval (ηL, ηR) contains η0, and
the interval is halved in each iteration. The iteration terminates either when |f0(M,ηm)− r∗| ≤∆ or
when ηR− ηL <∆. In the former case, we take ηm as the solution for η0, while in the latter case, we
take (ηL + ηR)/2 as the solution.

Algorithm for computing η1. The algorithm for computing η1 follows a similar approach. We
begin with two interval endpoints ηL < ηR such that f1(M,ηL)>∆ and f1(M,ηR)<−∆. Using the
monotonicity result from Lemma 1, we know that η1 ∈ (ηL, ηR). Next, we calculate the function value
at the midpoint of the interval, ηm := (ηL + ηR)/2, by computing f1(M,ηm). If f1(M,ηm)>∆, then
we know that η1 > ηm by the monotonicity result from Lemma 1, and we update the interval by
setting ηL← ηm. Conversely, if f1(M,ηm)<−∆, then we know that η1 < ηm by the same monotonicity
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result, and we update the interval by setting ηR← ηm. Similarly, the iteration terminates either if

|f1(M,ηm)| ≤∆ or if ηR− ηL <∆.

Algorithm for computing C̄. To compute C̄, we start by setting η̄ as the minimum of η0

and η1. Next, we use the algorithm described in §EC.4.1 to obtain the entire discretized sequences

(f0(zn, η̄))Nn=−N and (f1(zn, η̄))Nn=−N . It is possible that the two functions f0(·, η̄) and f1(·, η̄) do not

intersect, for instance, when co ≥ c̄. When this happens, we set C̄ = 0 because on-demand staffing is

never worthwhile. Otherwise, we compute C̄ by the numerical integration C̄ =
∑N
n=−N δ[f0(zn, η̄)−

f1(zn, η̄)]+.

EC.4.3. Algorithm for Finding (η?, z?0 , z?1)

Given the inputs η0, η1, and C̄, we can find the optimal Bellman equation solution (η?, z?0 , z?1) for any

C ≤ C̄. Note that if C > C̄, then it can be concluded that the solution (η?, z?0 , z?1) does not exist.

Similar to what we did in §EC.4.2, we start by selecting two interval endpoints ηL < ηR such that∑N
n=−N δ[f0(zn, ηL)− f1(zn, ηL)]+ <C −∆ and

∑N
n=−N δ[f0(zn, ηR)− f1(zn, ηR)]+ >C + ∆. If the two

functions f0(·, η) and f0(·, η) do not intersect for η ∈ {ηL, ηR}, we treat the corresponding numerical

integration
∑N
n=−N δ[f0(zn, η)− f1(zn, η)]+ as zero. In practice, we can set ηL = 0 and ηR = η̄.

Since the area of the intersected region is monotonically decreasing in η, we can use a binary search

on η to find the optimal η? such that the integration
∑N
n=−N δ[f0(zn, η?)− f1(zn, η?)]+ is very close

to C, e.g., |
∑N
n=−N δ[f0(zn, η?)− f1(zn, η?)]+−C| ≤∆.

Once we have η?, we can find the points of intersection by setting z?0 := min
{
zn, n∈ [N ]

∣∣|f0(zn, η?)−

f1(zn, η?)| ≤∆
}

and z?1 := max
{
zn, n∈ [N ]

∣∣|f0(zn, η?)− f1(zn, η?)| ≤∆
}
.

EC.5. Some Immediate Extensions

EC.5.1. General Arrival Processes and Class-Dependent Service Times

Up to this point, we have relied on several assumptions regarding the arrival of job requests and the

completion of service processes. However, in terms of the diffusion analysis, some of these assumptions

can be readily relaxed to achieve greater generality.

First, rather than assuming Poisson arrivals, we can assume that the job arrival process for each

class follows a renewal process. Specifically, we can suppose that the inter-arrival times for class-i

jobs are independent and identically distributed (i.i.d.) random variables with a mean of 1/λi and a

coefficient of variation of ci. With this new assumption in mind, we can use strong approximations

for renewal processes to get

Ai(t) = λit+ ci
√
λiÂi(t) + εai (t) for i= 1, . . . , I,
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where we have abused notation to let Ai(t) denote the number of class-i jobs that arrived up to t and
each Âi represent a standard Brownian motion. By making this generalization, we arrive at a new
volatility parameter for our approximating diffusion, denoted by σ :=

√
λ+

∑
i ciλi. This parameter

replaces the previous volatility parameter,
√

2λ, as seen in (9).
Second, all job classes are thus far assumed to have statistically identical service times. However, in

reality, different classes may have unique service requirements. When studying scheduling problems in
the Halfin-Whitt regime, papers such as Harrison and Zeevi (2004) and Atar et al. (2004) have shown
that that allowing for class-dependent service rates can present an immense analytical challenge,
as it involves solving a complex partial differential equation. This same observation has been made
in other works, such as Gurvich et al. (2008) and Kim et al. (2018), where the authors assume
class-independent services to gain clearer insights into the associated decision problems. In this paper,
we share their intuition that identical service rates eliminate the need to distinguish between job
classes during service, making the number of jobs in the system a good proxy for the system state.
Nevertheless, to properly account for the possibility of varying service requirements across classes, we
can specify that each class i has its own service rate µi, which satisfies

µi = µ+ µ̂i/
√
λ, (EC.34)

where µ̂i is a constant that does not change with λ. Intuitively, this scaling condition suggests all
service rates surround and are close to an “average” µ. Defining ai := λi/λ, the difference between µi

and µ, as implied by (EC.34), adds an additional term −aiµ̂i
√
λ to the drift of the corresponding

controlled diffusion. Thus, the extension (EC.34) produces a controlled diffusion with a drift-rate
function

b̌(y, z,q) :=−β
√
λµ−

I∑
i=1

aiµ̂i
√
λ−κp

√
λµy+µ

[
z−κp

√
λ/µy

]−
−

I∑
i=1

θi

[
z−κp

√
λ/µy

]+

qi.

Alternatively, for the purpose of practical implementation, one can use “moment matching,” as
proposed in Kim et al. (2018) to approximate the service rate of each class by average weighted
service across all classes. This involves selecting µ such that

1
µ

=
∑
i

ai
µi
,

and then solving the DCP with the class-independent service rate µ. Numerical studies in Kim et al.
(2018) validate the effectiveness of this approach. Our own numerical studies confirm their findings,
showing that moment-matching is even more effective than the approximation from (EC.34).

Third, we can allow on-demand servers to have a service rate µ̃ that is smaller than or equal to
µ, as opposed to assuming all servers to have identical service rates. This generalization reflects the
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prospect that on-demand agents may have less experience and, as a result, work at a slower pace than
permanent staff. With approximately κp

√
λ/µ on-demand servers available whenever the system is in

the “on” mode, these servers collectively provide an additional service capacity of µ̃κp
√
λ/µ if they

are busy. Suppose we always route incoming jobs to an on-demand server whenever both permanent
and on-demand servers are idle. (Previously, we required incoming jobs to be routed to a permanent
server if both types of servers were idle.) With this change, we can update the drift-rate function in
the diffusion approximation. We denote the new function as b̃, which replaces b in (9) and is defined as

b̃(y, z,q) :=−β
√
λµ− µ̃κp

√
λ/µy+µ

[
z−κp

√
λ/µy

]−
−

I∑
i=1

θi

[
z−κp

√
λ/µy

]+

qi.

Notably, none of the aforementioned extensions results in a Bellman equation that is fundamentally
different from the one in (13). As a result, our analytical results for the base case model essentially
carry over to those extensions.

EC.5.2. General Patience-Time Distributions

In their study of the job scheduling problem within the framework of a multi-class many-server queue,
Kim et al. (2018) consider approximations for class-specific reneging processes. These approximations
enable the development of a tractable DCP that accommodates general distributions for the patience
times of each class. Notably, these approximations can be effectively applied to our second-stage
problem as well. Specifically, if the patience times of jobs in class i are distributed according to a
well-defined hazard-rate function hi, then the reneging process for class i can be approximated using
hazard rate scaling techniques as in Kim et al. (2018) to obtain

Ri(t)≈ λi
∫ t

0
ζi

(
Qi(u)
λi

)
du,

where ζi(·) is defined as ζi(x) :=
∫ x

0 hi(y)dy. This results in a DCP whose solution can be described
by the Bellman equation:

min
{
λvzz(y, z) + min

q∈A

{
b̄(y, z, q)vz(y, z) +

∑
i

riλiζi

([
z−κp

√
λ/µy

]+

qi/λi

)}

+ coκp
√
λ/µy− η?, v(1, z) +C − v(0, z), v(0, z)− v(1, z)

}
= 0

(EC.35)

subject to limz→−∞ vz(y, z) = 0 and limz→∞ vz(y, z) = r∗ for r∗ := mini ri, where

b̄(y, z,q) :=−β
√
λµ−κp

√
λµy+µ

[
z−κp

√
λ/µy

]−
−

I∑
i=1

λiζi

([
z−κp

√
λ/µy

]+

qi/λi

)
.

As in §4.1.2, we can identify two functions from (EC.35) denoted as f̄0 and f̄1, which fulfill
roles similar to those of f0 and f1. However, we are unable to achieve a result similar to that in
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Proposition 1 for f̄0 and f̄1. Consequently, we are unable to draw any analytical conclusions about the
potential structure of the switching rule. Indeed, the proof of Proposition 1 relies on the assumption
of exponential patience times, which enables the domain of the functions f0 and f1 to be partitioned
into a finite number of sets. These equations can be solved in closed form on each set because they
belong to the class of linear first-order differential equations on each set. Unfortunately, it is unclear
how to extend the arguments presented in the proof of Proposition 1 to obtain a similar result for f̄0

and f̄1.
Nonetheless, our numerical explorations in §EC.6.2 seem to indicate positive outcomes. In that

section, we employed numerical methods to solve the DCP solutions under various patience time
distributions, all of which belong to the Weibull family and share a common mean value. These
distributions have constant, decreasing, and increasing hazard rates. Our results show that the
functions f̄0 and f̄1 maintain the desired structure, enabling us to solve the Bellman equation
numerically. We also observed that when the patience time exhibits an increasing (or decreasing)
hazard rate, the average cost of the system and the profitability of on-demand staffing tend to be lower
(or higher) and higher (or lower), respectively, than when the patience time follows an exponential
distribution with a constant hazard rate. Therefore, exploring the effects of incorporating more general
patience-time distributions on on-demand staffing decisions could be a promising direction for future
research.

EC.5.3. Incorporating Holding Costs

Apart from reducing call abandonment, call centers may also care about the negative experiences that
customers may encounter while waiting for service. To effectively model these negative experiences, a
holding cost can be introduced to each job in the queue. Atar et al. (2010, 2011) consider a multi-
class, multi-server Markovian queueing system with class-specific linear holding costs, abandonment
penalties, and abandonment rates. They show that this cost structure is equivalent to one that only
involves class-specific linear holding costs. This insight carries over to the present study, allowing us
to incorporate holding costs through a slight modification to the solution framework, thereby saving
the need to overhaul the entire analysis.

Suppose that each job in queue i incurs a holding cost of γi per unit of time. Thus, the objective
of the second-stage problem is to establish an on-demand staffing and job scheduling policy that
minimizes the following:

lim sup
t→∞

1
t
E
[

I∑
i=1

∫ t

0
γiQi(u)du+

I∑
i=1

riRi(t) + co

∫ t

0
Ŷ (u)du+CΞ(t)

]
,

where the processes Qi, Ri, Ŷ and Ξ are defined as before. Since the addition of the holding cost term
to the objective does not affect the queueing dynamics, the approximating diffusion remains the same
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as in (9) when holding costs are included. However, the objective of the corresponding DCP is now to
choose (Y,G) to minimize

lim sup
t→∞

1
t
E
[

I∑
i=1

(γi + riθi)
∫ t

0

[
Z(u)−κp

√
λ/µY (u)

]+

gi(u)du

+coκp
√
λ/µ

∫ t

0
Y (u)du+C

∑
u≤t

[∆Y (u)]+
]
.

Accordingly, the Bellman equation associated with the corresponding DCP seeks to find some pair
(v, η) that satisfies

min
{
λvzz(y, z) + min

q∈A

{
b(y, z,q)vz(y, z) +

[
z−κp

√
λ/µy

]+∑
i

(γi + riθi)qi
}

+ coκp
√
λ/µy− η?, v(1, z) +C − v(0, z), v(0, z)− v(1, z)

}
= 0

subject to limz→−∞ vz(y, z) = 0 and limz→∞ vz(y, z) = r̃∗ for r̃∗ := mini(ri + γi/θi). It follows that
adding holding costs has no fundamental effect on the structure of the Bellman equation, other than
replacing each congestion-related cost rate riθi in the equation with an effective cost rate γi + riθi

and slightly modifying the right boundary condition (to ensure the value function has a polynomial
growth rate). As a result, our solution approach and prior analytical results again carry over to the
extension with holding costs.
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EC.6. Supporting Materials for the Numerical Studies

EC.6.1. Dynamics of Function Pairs f0(·, η) and f1(·, η) and Their Intersected Area
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(a) A= 1 : (η, bx0c, dx1e) = (8.096,99,108)
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(b) A= 15 : (η, bx0c, dx1e) = (11.320,89,114)
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(c) A= 30 : (η, bx0c, dx1e) = (12.709,78,117)
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Figure EC.1 Dynamics of the Bellman equation solution (f0(·, η), f1(·, η), x0(η), x1(η)) and the corresponding
intersected area A(η) as η increases to η̄ in the single-class example. In this example (N0 = 100,K =
10, p= 1), we have η0 = 16.525, η̄= η1 = 12.848 and the maximum intersected area A(η̄) = 35.186.
The four values of η are chosen such that the intersected area A(η) = 1,15,30 and 35.186.



ec26 e-companion to Sun and Liu: Expanding Service Capabilities Through an On-Demand Workforce

EC.6.2. DCP Solutions under General Patience-Time Distributions
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(a) C = 5 : (η?, bx?0c, dx?1e) = (15.967,90,103)
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Figure EC.2 Graphical display of the Bellman equation solution (f0(·, η?), f1(·, η?), η?, x?0, x?1) under different
switching costs in the single-class example, where the abandonment time has a decreasing hazard
rate function h(x) := kθ̂kxk−1 with k= 0.5 and θ̂ := θ gamma(1+k). In this example, we have chosen
N0 = 100,K = 10, p= 1.

90 100 110 120 130 140

Number of Jobs in System

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f
0

f
1

Intersection Area = 12.5

𝒙𝒙𝟎𝟎 𝒙𝒙𝟏𝟏

(a) C = 12.5 : (η?, bx?0c, dx?1e) = (4.898,102,136)

90 100 110 120 130 140

Number of Jobs in System

0

0.5

1

1.5

2

2.5

3

3.5

4

f
0

f
1

Intersection Area = 25

𝒙𝒙𝟎𝟎 𝒙𝒙𝟏𝟏

(b) C = 25 : (η?, bx?0c, dx?1e) = (5.638,100,142)

Figure EC.3 Graphical display of the Bellman equation solution (f0(·, η?), f1(·, η?), η?, x?0, x?1) under different
switching costs in the single-class example, where the abandonment time has an increasing hazard
rate function h(x) := kθ̂kxk−1 with k= 2 and θ̂ := θ gamma(1 + k). In this example, we have chosen
N0 = 100,K = 10, p= 1.
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EC.6.3. Additional Numerical Results for §7

(a) p= 1 : Reduction = 37.409% (b) p= 0.75 : Reduction = 37.377% (c) p= 0.5 : Reduction = 38.539%

(d) C = 5 : Reduction = 39.947% (e) C = 10 : Reduction = 38.440% (f) C = 20 : Reduction = 37.699%

Figure EC.4 Theoretical first-stage problem costs computed using the diffusion approach and the exact MDP
approach in the single-class example. The first-stage problem cost (or two-stage problem cost) is
computed by adding the capacity planning cost cpN0 to the second-stage cost found in Figure 1.
The reduction captures the difference between the largest first-stage MDP cost (given by the worst
solution) and the minimal first-stage MDP cost (given by the best solution).

(a) (b) (c)

Figure EC.5 (a) Theoretical second-stage costs of the on-demand staffing policy and the two static staffing
policies; (b) reduction in second-stage cost achieved by the proposed on-demand staffing policy
compared to the best possible static staffing police; and (c) theoretical first-stage problem cost of
the on-demand staffing policy in the two-class example.
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(a) Retail Banking: Abandonment Time
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(b) Online Banking: Abandonment Time
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(c) Retail Banking: Service Time
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(d) Online Banking: Service Time

Figure EC.6 Historical (a)(b) abandonment times and (c)(d) service times of customers whose service types are
retail and online banking.

EC.7. Numerical Results for Three Operating Modes

As alluded to in §8, we can enhance the system’s flexibility by dividing the total number of on-demand

agents, K, into two sub-pools: the Tier-1 pool and the Tier-2 pool. The sizes of these pools are K1

and K −K1, respectively. This division enables the system to switch between three operating modes,

namely, mode 0: permanent staff only (N0 agents), mode 1: permanent staff plus Tier-1 pool (at

most N0 +K1 agents), and mode 2: permanent staff plus both pools (at most N0 +K agents). We

next demonstrate how our solution approach can be adapted to determine the optimal switching

boundaries for the three-mode staffing problem. To set up the corresponding Bellman equation, we

require additional notation.
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Firstly, to reflect the maximum possible number of on-demand agents in each mode, we define κy
for y = 0,1,2 as

κ0 := 0, κ1 :=K1/
√
λ/µ and κ2 :=K/

√
λ/µ.

We also modify the drift-rate function (10) as follows:

b̄(y, z,q) :=−β
√
λµ−κyp

√
λµ+µ

[
z−κyp

√
λ/µ

]−
−

I∑
i=1

θi

[
z−κyp

√
λ/µ

]+

qi.

Secondly, to make a fair comparison between a two-mode and a three-mode system later on, we
assume that the switching costs between the three operating modes, denoted as C01,C12 and C02,
respectively, satisfy

C01/(κ1−κ0) =C12/(κ2−κ1) =C02/(κ2−κ0).

Additionally, we set C02 = C. It is important to note that the above condition corresponds to the
proportional-changeover-cost condition, which is adopted in Vande Vate (2021). This condition leads
to a strongly ordered switching policy in terms of optimally controlling a simple Brownian motion, as
demonstrated in that paper. While our underlying diffusion process is more complex, we conjecture
that the optimal three-mode staffing policy under this condition should also have a similar ordered
structure. Specifically, we conjecture that, under proper parameter configurations, the optimal policy is
characterized by four switching boundaries z?10, z

?
01, z

?
21, z

?
12 satisfying the following order relationships:

z?10 < z?01, z?21 < z?12, z?01 < z?12 and z?10 < z?21. This policy involves switching the system’s staffing mode
from 0 to 1 when the diffusion process Z, which approximates the number of jobs in the system
centered around N0, increases to z?01. Similarly, it switches the mode from 1 to 2 as Z increases further
to z?12. Conversely, the system transitions from mode 2 to 1 as Z decreases to z?21, and to mode 0 as
Z decreases further to z?10.

If the above conjectured policy is indeed optimal, analogous to equations (15)-(18), we should be
able to find relative value functions v̄y(·) for y = 0,1,2 and a constant η̄?, such that

λv̄′′0 (z) + min
q∈A

{
b̄(0, z,q)v̄′0(z) + [z]+

∑
i

riθiqi

}
= η̄? for z < z?01,

λv̄′′1 (z) + min
q∈A

{
b̄(1, z,q)v̄′1(z) +

[
z−κ1p

√
λ/µ

]+∑
i

riθiqi

}
+ coκ1p

√
λ/µ= η̄? for z?10 < z < z?12,

λv̄′′2 (z) + min
q∈A

{
b̄(1, z,q)v̄′2(z) +

[
z−κ2p

√
λ/µ

]+∑
i

riθiqi

}
+ coκ2p

√
λ/µ= η̄? for z > z?21,

v̄0(z?10) = v̄1(z?10) and v̄0(z?01) = v̄1(z?01) +C01,

v̄1(z?21) = v̄2(z?21) and v̄1(z?12) = v̄2(z?12) +C12

subject to the boundary conditions

lim
z→−∞

v̄′0(z) = 0 and lim
z→∞

v̄′2(z) = r∗,
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plus a set of optimality conditions derived from the “principle of smooth fit”:

v̄′0(z?10) = v̄′1(z?10) and v̄′0(z?01) = v̄′1(z?01), (EC.36)

v̄′1(z?21) = v̄′2(z?21) and v̄′1(z?12) = v̄′2(z?12). (EC.37)

If the constant η̄? exists, it can serve as a guess for the average cost of the conjectured policy that
switches between the three operating modes. However, we currently do not have an obvious way to
formally establish the optimality of the conjectured policy or the existence of the switching boundaries
(z?10, z

?
01, z

?
21, z

?
12) and the constant η̄?. Nonetheless, by extending the algorithms developed in §EC.4,

we can numerically solve for (z?10, z
?
01, z

?
21, z

?
12) and η̄? using a two-layer binary search algorithm over η

and the initial boundary condition of v̄′1(·) to find solutions that simultaneously satisfy conditions
(EC.36) and (EC.37).

Using this algorithm, we can compare the performances of (i) static staffing policies, (ii) on-demand
staffing policies using a single on-call pool, and (iii) on-demand staffing policies using Tier-1 and Tier-2
pools of different sizes through numerical experiments. To illustrate this, we consider the single-class
example in §7.1 and focus on the setting where the on-demand agent’s show-up probability is p= 0.75,
and the switching cost between mode 0 (permanent staff only) and mode 2 (permanent staff plus
both pools) is C02 =C = 15. In this setting, the optimal first-stage solution is (N0,K) = (100,17), as
shown in the fifth row of Table 1. When (N0,K) = (100,17), the best static staffing policy yields an
average cost of η1 = 14.327, while the proposed on-demand staffing policy using a single on-call pool
produces an average cost of η? = 11.060. Furthermore, the optimal switching boundaries of this policy
are (bx?0c, dx?1e) = (93,115), as shown in the fourth and last rows of Table 2.

Next, we consider Tier-1 pool sizes of K1 = 1,2, . . . ,K − 1 and numerically solve for the switching
boundaries (z?10, z

?
01, z

?
21, z

?
12) and the long-run average cost η̄? for each K1. The cost comparison

between η1, η?, and η̄? under different K1 is shown in Figure EC.7. We observe that the on-demand
staffing policy utilizing two sub-pools leads to cost reduction compared to the policy that utilizes a
single pool, and this reduction is most significant when the two sub-pools are of roughly equal sizes.
The intuition behind this is that when the Tier-1 pool size is too small or large, mode 1 becomes
similar to mode 0 or mode 2, and thus the three-mode staffing policy behaves more like the two-mode
staffing policy. This observation is supported by the last two columns of Table EC.1, from which
we see that the switching boundaries (bx?21c, dx?12e) (resp. (bx?10c, dx?01e)) almost coincides with the
optimal two-mode switching boundaries (bx?0c, dx?1e) = (93,115) when K1 is too small (resp. large).

A more important piece of information revealed by Figure EC.7 is that the marginal benefit of
having more operating modes decreases dramatically. To see this, we calculate the improvement of the
three-mode staffing policy over the best static staffing policies by (η1− η̄?)/η1× 100% and over the
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Figure EC.7 Second-stage costs of (i) the best possible static staffing policy, (ii) the on-demand staffing policy
using a single on-call pool, and (iii) the on-demand staffing policy using Tier-1 and Tier-2 pools of
different sizes.

two-mode staffing policy by (η?− η̄?)/η?× 100%. We also calculate the benefit of having one more
operating mode of flexibility (in terms of reducing the static staffing cost) by (η?− η̄?)/η1× 100%.
These quantities are reported in columns 2,3 and 4 of Table EC.1. From the small numbers in columns
3 and 4 compared to those in columns 2, we can see that a simpler policy that utilizes only two
operating modes can reap most of the benefits of on-demand staffing.

Table EC.1 Cost improvement (improv.) of the three-mode staffing policy (i) over the best static staffing polices
and (ii) over the two-mode staffing policy utilizing a single on-call pool; (iii) the benefit of having one more operating

mode of flexibility in terms of reducing the static staffing cost, and (iv) the optimal switching boundaries of the
three-mode staffing policy under different Tier-1 pool sizes.

Tier-1 Pool Size Improv. Over
Static Staffing(%)

Improv. Over
Single Pool(%)

Benefit of
Additional Flexibility(%) (bx?

10c,dx?
01e) (bx?

21c,dx?
12e)

1 24.010 1.566 1.209 (83,106) (94,115)
2 25.089 2.963 2.288 (84,106) (95,116)
3 26.005 4.151 3.204 (85,107) (95,116)
4 26.728 5.087 3.927 (86,107) (96,117)
5 27.334 5.872 4.533 (86,108) (97,117)
6 27.744 6.402 4.943 (87,108) (98,118)
7 27.982 6.711 5.181 (88,109) (98,119)
8 28.052 6.802 5.251 (88,110) (99,119)
9 27.970 6.696 5.169 (89,110) (100,120)
10 27.730 6.385 4.929 (90,111) (100,120)
11 27.365 5.912 4.564 (90,111) (101,121)
12 26.857 5.253 4.056 (91,112) (102,121)
13 26.254 4.473 3.453 (91,113) (102,122)
14 25.518 3.520 2.717 (92,113) (103,122)
15 24.701 2.461 1.900 (92,114) (103,123)
16 23.788 1.278 0.987 (93,114) (103,124)


